Difference between revisions of "Mechanical engineering" - New World Encyclopedia

From New World Encyclopedia
 
(32 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{Claimed}}
+
{{Edboard}}{{Images OK}}{{Submitted}}{{Approved}}{{Paid}}{{copyedited}}
'''Mechanical Engineering''' is the engineering discipline that involves the application of the [[physics|principles of physics]] for the analysis, [[design]], [[manufacturing|manufacture]], and maintenance of [[machine|mechanical]] [[physical system|systems]].  It requires a solid understanding of concepts including [[mechanics]], [[kinematics]], [[thermodynamics]] and [[energy]].  Mechanical engineers use these principles and others in the design and analysis of automobiles, aircraft, heating & cooling systems, manufacturing plants, industrial equipment, machinery, and more.
+
[[Image:Volkswagen W16.jpg|thumb|right|250px|Mechanical engineers design and build [[engine]]s and [[power plant]]s…]]
  
 +
 +
'''Mechanical Engineering''' is the [[engineering]] discipline that involves application of the [[physics|principles of physics]] for the analysis, [[design]], [[manufacturing|manufacture]], and maintenance of [[machine|mechanical]] [[physical system|systems]]. It requires a solid understanding of concepts including [[mechanics]], [[thermodynamics]], and engineering design; as well as solid grounding in physics and [[mathematics|math]]. Mechanical engineers use these principles and others in the design and analysis of automobiles, heating and cooling systems, industrial equipment, and more.
 +
{{toc}}
 +
[[Image:Supertanker AbQaiq.jpg|thumb|right|250px|Structures and [[vehicle]]s of all sizes…]]
 +
[[Image:Robots in car production-line.jpg|thumb|250px|And moving [[mechanism]]s, [[machine]]s, and [[robot]]s.]]
 
==History==
 
==History==
 +
The beginnings of mechanical engineering go back to the craftsmen and inventors of the first tools and basic machineries powered by human or animal labor, water or wind energy, or their combination. Mechanical engineering as a field of engineering study, however, did not start until the advent of the [[Industrial Revolution]] with the demand for the [[steam engine]]. The first professional society for mechanical engineers, the Institute of Mechanical Engineers, was formed in the United Kingdom in 1847. Since then, advancements in the field of mechanical engineering have lead to such breakthroughs as the [[internal combustion engine]], which made heavier-than-air powered flight possible and would also lead to the development of the [[automobile]], [[air conditioning]], [[robotics]], and more.
  
Mechanical engineering could be found in many ancient and medieval societies throughout the globe. In [[ancient Greece]], there were brilliant engineers such as [[Archimedes]] (287-212 B.C.E.), as well as [[Heron of Alexandria]] (10-70 C.E.). The mechanical works of the latter two deeply influenced mechanics in the Western tradition, although there were many others who contributed to early mechanical science. In [[ancient China]], there were also notable figures such as [[Zhang Heng]] (78-139 C.E.) and [[Ma Jun]] (200-265 C.E.). The medieval Chinese horologist and engineer [[Su Song]] (1020-1101 C.E.) incorporated an [[escapement]] mechanism into his [[astronomical]] [[clock tower]] two centuries before any escapement could be found in clocks of medieval Europe, as well as the world's first known endless power-transmitting [[chain drive]].
+
==Process of mechanical engineering==
 
+
The process of engineering design is, as described by Pahl and Beitz, "the intellectual attempt to meet certain demands in the best way possible…. an engineering activity that impinges on nearly every sphere of human life, relies on the discoveries and laws of science, and creates the conditions for applying these laws to the manufacture of useful products" (Pahl and Beitz, 1988).
Before the [[Industrial Revolution]], almost all engineering was for military and civil uses. Engineers in the military designed fortifications and various war machines, while civil engineers were primarily responsible for buildings and ground structures. During the early 19th century in [[England]], mechanical engineering developed as a separate field to provide manufacturing machines and the engines to power them. The first British professional society of  mechanical engineers was formed in 1847. In the [[United States]], the first mechanical engineering professional society was formed in 1880, making it the third oldest type of engineering in the country, behind civil (1852) and mining & metallurgical (1871)." The first schools in the United States to offer an engineering education were the [[United States Military Academy]] in 1817, an institution now known as [[Norwich University]] in 1819, and the [[Rensselaer Polytechnic Institute]] in 1825. An engineering education is based on a strong foundation in mathematics and science; this is followed by courses emphasizing the application of this knowledge to a specific field and studies in the social sciences and humanities to give the engineer a broader education.
 
 
 
== Education ==
 
 
 
A Bachelor of Science (BS) / Bachelor of Arts (BA) degree in Mechanical Engineering is offered at many universities in the United States, and similar programs are offered at universities in most [[industrialization|industrialized]] nations.  In the U.S., Japan, Germany, Canada, Taiwan, South Korea, South Africa and many others, Mechanical Engineering programs typically take four to five years, and result in a Bachelor of Science in Mechanical Engineering or BSc (Mech. Eng.), but some countries like Singapore, Malaysia, India, and Nigeria offer a four-year Bachelor of Science (BSc) / Bachelor of Engineering (BEng) degree with Honors (Hons) in Mechanical Engineering. In Australia and New Zealand, requirements are typically for a four-year Bachelor of Engineering (BE or BEng) degree, equivalent to the British MEng level. A BEng degree differ from a BSc degree in that the students obtain a broader education consisting of information relevant to various engineering disciplines.
 
 
 
Most Mechanical Engineering programs in the U.S. are [[School accreditation|accredited]] by the [[Accreditation Board for Engineering and Technology]] (ABET) to ensure similar course requirements and standards between universities.  The ABET [http://www.abet.org web site] lists 276 accredited Mechanical Engineering programs as of June 19, 2006.<ref>[http://www.abet.org/accrediteac.asp ABET searchable database of accredited engineering programs], Accessed ''June 19, 2006''</ref>  Mechanical Engineering programs in Canada are accredited by the Canadian Engineering Accreditation Board (CEAB).<ref>[http://www.engineerscanada.ca/e/acc_programs_1.cfm Accredited engineering programs in Canada by the Canadian Council of Professional Engineers], Accessed ''April 18, 2007''</ref>
 
 
 
Some Mechanical Engineers go on to pursue a postgraduate degree such as a [[Master of Engineering]], [[Master of Science]], [[Master of Engineering Management]] (MEng.Mgt, MEM), a [[Doctor of Philosophy]] in Engineering (DEng, PhD) or an [[Engineer's degree]]. The Master's and Engineer's degrees may consist of either [[research]], [[coursework]] or a mixture of the two. The Doctor of Philosophy consists of a significant research component and is often viewed as the entry point to [[academia]]. <ref>[http://www-me.mit.edu/GradProgram/GradDegrees.htm Types of post-graduate degrees offered at MIT] - Accessed ''19 June 2006''</ref>
 
 
 
Mechanical engineering programs generally cover the same fundamental subjects. Universities offering [[School accreditation|accredited]] programs in mechanical engineering are required to offer several major subjects of study, as determined by the parent nation's accreditation board.  This is to ensure a minimum level of competence among graduating engineers and to inspire confidence in the engineering profession as a whole.  The specific courses required to graduate, however, may differ from program to program.  Universities will often combine multiple subjects into a single class or split a subject into multiple classes, depending on the faculty available and the University's major area(s) of research.  Fundamental subjects of mechanical engineering include:
 
 
 
*[[statics]] & [[dynamics (mechanics)|dynamics]]
 
*[[strength of materials]] & [[solid mechanics]],
 
*[[instrumentation]] and [[measurement]],
 
*[[thermodynamics]], [[heat transfer]], [[energy conversion]], and [[refrigeration]] / [[air conditioning]],
 
*[[fluid mechanics]]/[[fluid dynamics]],
 
*[[mechanism]] design (including [[kinematics]] and [[dynamics (mechanics)|dynamics]]),
 
*manufacturing technology or processes,
 
*[[hydraulics]] & [[pneumatics]],
 
*engineering [[design]],
 
*[[mechatronics]] and/or [[control theory]],
 
*[[Engineering drawing|drafting]], [[CAD]] (usually including [[Solid modeling]]), and [[computer-aided manufacturing|CAM]].<ref>University of Tulsa Required ME Courses - http://www.me.utulsa.edu/Undergraduate.html - Accessed ''19 June 2006''</ref><ref>[http://www.deas.harvard.edu/undergradstudy/engineeringsciences/mechanical/index.html Harvard Mechanical Engineering Page] - Accessed ''19 June 2006''</ref>
 
 
 
Mechanical engineers are also expected to understand and be able to apply basic concepts from chemistry, [[chemical engineering]], [[electrical engineering]], and physics.  Most mechanical engineering programs include several semesters of [[calculus]], as well as advanced mathematical concepts which may include [[differential equations]] and [[partial differential equations]], [[linear algebra|linear]] and [[modern algebra]], and [[differential geometry]], among others. 
 
 
 
In addition to the core mechanical engineering curriculum, many mechanical engineering programs offer more specialized programs and classes, such as [[mechatronics]] / [[robotics]], [[transport]] and [[logistics]], [[cryogenics]], [[fuel]] technology, [[automotive engineering]], [[biomechanics]], [[oscillation|vibration]], [[optics]] and others, if a separate department does not exist for these subjects.
 
 
 
Most mechanical engineering programs also require varying amounts of research or community projects to gain practical problem-solving experience.  Mechanical engineering students usually hold one or more [[internship]]s while studying, though this is not typically mandated by the university.
 
 
 
==Licensing==
 
 
 
After earning their degrees, engineers may seek [[licensing|license]] with a state or national government.  The purpose of this process is to ensure that engineers possess the necessary technical knowledge and real-world experience to engineer safely.  Once certified, the engineer is given the title of ''Professional Engineer'' (in the United States, Canada, Japan, South Korea and South Africa), ''Chartered Engineer'' (in the UK, Ireland, India and Zimbabwe), ''Chartered Professional Engineer'' (in Australia and New Zealand) or ''European Engineer'' (much of the European Union). Not all mechanical engineers choose to become licensed; those that do can be distinguished as Chartered/Professional Engineers by the [[post-nominal letters|post-nominal title]] '''PE''' or '''CEng''', as in: Ryan Jones, PE.
 
 
 
In the U.S., to become a licensed Professional Engineer, an Engineer must pass the comprehensive ''FE (Fundamentals of Engineering)'' exam, work a given number of years (varies state by state) as an ''Engineering Intern (EI)'' or ''Engineer-in-Training (EIT)'', pass the ''Principles and Practice'' or ''PE (Practicing Engineer or Professional Engineer)'' exam. These requirements and steps of this process are set forth by the [[National Council of Examiners for Engineering and Surveying]] (NCEES), [http://www.ncees.org/ website], a national non-profit organization representing all states.
 
 
 
In the UK, current graduates require a MSc, MEng or BEng (Hons) in order to become chartered through the Institution of Mechanical Engineers. In most modern countries, certain engineering tasks, such as the design of bridges, electric power plants, and chemical plants, must be approved by a [[Professional Engineer]] or a [[Chartered Engineer]]. In the USA and Canada, only a licensed engineer may seal engineering work for public and private clients.".<ref>{{cite web | title = Why Should You Get Licensed? | work = National Society of Professional Engineers | url = http://www.nspe.org/lc1-why.asp | accessdate = July 11 | accessyear = 2005 }}</ref>  This requirement is written into state and provincial legislation, such as Quebec's Engineer Act.<ref>{{cite web | title = Engineers Act | work = Quebec Statutes and Regulations (CanLII) | url = http://www.canlii.org/qc/laws/sta/i-9/20050616/whole.html | accessdate = July 24 | accessyear = 2005 }}</ref> In other countries, such as Australia, no such legislation exists; however, practically all certifying bodies maintain a [[code of ethics]] independent of legislation that they expect all members to abide by or risk expulsion.<ref>{{cite web | title = Codes of Ethics and Conduct | work = Online Ethics Center | url = http://onlineethics.org/codes/ | accessdate = July 24 | accessyear = 2005 }}</ref>
 
 
 
::(See Also: [[FE Exam]] | [[Professional Engineer]] | [[Chartered Engineer]] | [[Incorporated Engineer]] | [[Washington Accord]])
 
 
 
==Workforce and Educational Statistics==
 
The total number of engineers employed in the U.S. in 2004 was roughly 1.4 million.  Of these, 226,000 were mechanical engineers (15.6%), second only in size to civil engineers at 237,000 (16.4%).  The total number of mechanical engineering jobs in 2004 was projected to grow 9 to 17%, with average starting salaries being $50,236 with a bachelor's degree, $59,880 with a master's degree, and $68,299 with a doctorate degree.  This places mechanical engineering at 8th of 14 among engineering bachelors degrees, 4th of 11 among masters degrees, and 6th of 7 among doctorate degrees in average annual salary.<ref>U.S. Department of Labor, Bureau of Labor Statistics, Engineering - http://www.bls.gov/oco/ocos027.htm#earnings - Accessed ''19 June 2006''</ref>  The median annual earning of mechanical engineers in the U.S. workforce is roughly $63,000.  This number is highest when working for the government ($72,500), and lowest when doing general purpose machinery manufacturing in the private sector ($55,850).<ref>http://www.worldwidelearn.com/online-education-guide/engineering/mechanical-engineering-major.htm - Website cites NACE and Dept. of Labor as sources, but was unable to verify.  Accessed ''19 June 2006''</ref>
 
 
 
Canadian engineers make an average of $28.10 per hour with 3% unemployed.  The average for all occupations is $16.91 per hour with 5% unemployed.  Eight percent of these engineers are self-employed, and since 1994 the proportion of female engineers has remained constant at 4%.<ref>http://www.jobfutures.ca/noc/2132p4.shtml - Accessed ''June 19, 2006''</ref>
 
 
 
==Process of Mechanical Engineering==
 
 
 
The process of engineering design is, as described by Pahl and Beitz, "the intellectual attempt to meet certain demands in the best way possible.... an engineering activity that impinges on nearly every sphere of human life, relies on the discoveries and laws of science, and creates the conditions for applying these laws to the manufacture of useful products." (Pahl and Beitz, 1988)
 
  
 
There are generally four main phases to engineering design:
 
There are generally four main phases to engineering design:
Line 68: Line 26:
 
*Cost (planning, materials, construction)
 
*Cost (planning, materials, construction)
  
==Tools and Work==
+
==Tools and work==
 
+
Modern analysis and design processes in mechanical engineering are aided by various computational tools including [[finite element analysis]] (FEA), [[computational fluid dynamics]] (CFD), [[computer-aided design]] (CAD)/[[computer-aided manufacturing]] (CAM) and Failure Modes & Effect Analysis (FMEA). These modern processes facilitate engineers to model (create a 3D object in a computer), analyze the quality of design, and so on, before a prototype is created. By this the invention and experimenting with new designs becomes very easy and can be done without any money invested in tooling and prototypes. Simple models can be free and instantaneous, but complicated models, like those describing the mechanics of living tissue, can require years to develop, and the actual computation can be very processor intensive, requiring powerful computers and a lot of cycle time.
Modern analysis and design processes in mechanical engineering are aided by various computational tools including [[finite element analysis]] (FEA), [[computational fluid dynamics]] (CFD), [[computer-aided design]] (CAD)/[[computer-aided manufacturing]] (CAM) and Failure Modes & Effect Analysis (FMEA). These modern processes facilitate engineers to model (create a 3D object in a computer), analyze the quality of design etc, before a prototype is created. By this the invention and experimenting with new designs becomes very easy and can be done without any money invested in tooling and prototypes. Simple models can be free and instantaneous, but complicated models, like those describing the mechanics of living tissue, can require years to develop, and the actual computation can be very processor intensive, requiring powerful computers and a lot of cycle time.
 
  
==Mechanical Engineering Topics==
+
==Mechanical engineering topics==
 
+
The field of mechanical engineering can be thought of as a collection of many mechanical engineering subdisciplines. Several of these typically taught at the undergraduate level are listed below, with a brief explanation and common applications of each. Most work that a mechanical engineer does uses skills and techniques from several of these subdisciplines, as well as cross-over work with other engineering disciplines.
The field of mechanical engineering can be thought of as a collection of many mechanical disciplines. Several of these subdisciplines which are typically taught at the undergraduate level are listed below, with a brief explanation and the most common application of each. Some of these subdisciplines are unique to mechanical engineering, while others are a combination of mechanical engineering and one or more other disciplines.  Most work that a mechanical engineer does uses skills and techniques from several of these subdisciplines, as well as specialized subdisciplines. Specialized subdisciplines, as used in this article, are usually the subject of graduate studies or on-the-job training more than undergraduate research. Several specialized subdisciplines are discussed at the end of this section.
 
  
 
=== Mechanics ===
 
=== Mechanics ===
:See main article on [[Mechanics]]''
+
[[Image:Mohrs circle.png|thumb|right|[[Mohr's circle]], a common tool to study [[Stress (physics)|stress]]es in a [[mechanical element]].]]
  
'''Mechanics''' is, in the most general sense, the study of [[force]]s and their effect upon [[matter]].  Typically, engineering mechanics is used to analyze and predict the acceleration and deformation (both [[Elastic Deformation|elastic]] and [[Plastic Deformation|plastic]]) of objects under known forces (also called loads) or [[Stress (physics)|stresses]]. Subdisciplines of mechanics include  
+
'''Mechanics''' is the physical science that deals with the state of rest or motion of bodies under forces (Meriam, 1966). It is the oldest of the physical sciences, and its early history is synonymous with the beginnings of engineering itself (Meriam, 1966). Subdisciplines of mechanics include:
*[[Statics]], the study of non-moving bodies under known loads
+
*[[Statics]], the study of the equilibrium of bodies under the actions of forces (Meriam, 1966).
*[[dynamics (mechanics)|Dynamics]] (or kinetics), the study of how forces affect moving bodies
+
*[[Kinetics]], also known as [[Dynamics]], the study of the actions of forces on bodies to their resulting motions (Meriam, 1966).
*[[Mechanics of materials]], the study of how different [[materials]] deform under various types of stress
+
*[[Kinematics]], the study of the motion of bodies without reference to the forces involved (Meriam, 1966).
*[[Fluid Mechanics]], the study of how fluids react to forces. Fluid mechanics can be further split into fluid statics and fluid dynamics, and is itself a subdiscipline of continuum mechanics. The application of fluid mechanics in engineering is called [[hydraulics]].
+
*[[Mechanics of materials]], also known as ''strength of materials'' or ''mechanics of deformable bodies;'' the branch of applied mechanics that deals with the behavior of solid bodies subjected to various types of loading (Gere, 2001).
 
*[[Continuum mechanics]] is a method of applying mechanics that assumes that objects are continuous. It is contrasted by discrete mechanics.
 
*[[Continuum mechanics]] is a method of applying mechanics that assumes that objects are continuous. It is contrasted by discrete mechanics.
 +
*[[Fluid Mechanics]], the study of how liquids and gases (fluids) react to forces, and is based on the same principles as the mechanics of solids. Fluid mechanics is a subdiscipline of continuum mechanics, and can be further split into fluid statics and fluid dynamics. The application of fluid mechanics in engineering is called [[hydraulics]] (Daugherty, Franzini, and Finnemore, 1985).
  
Mechanical engineers typically use mechanics in the design or analysis phases of engineering. If the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. Dynamics might be used when designing the car's engine, to evaluate the forces in the [[piston]]s and [[cam]]s as the engine cycles. Mechanics of materials might be used to choose appropriate materials for the frame and engine. Fluid mechanics might be used to design a ventilation system for the vehicle (see [[HVAC]]), or to design the [[intake]] system for the engine.
+
Mechanics is used extensively in the design and analysis phases of a project. In vehicle design, statics will be employed in the design of the frame of the vehicle, in order to evaluate where and how the stresses will interact. Dynamics might be used when designing the car's engine, to evaluate the forces on the [[piston]]s and [[cam]]s as the engine cycles. Mechanics of materials will be used to choose appropriate materials for each component of the frame and engine. Fluid mechanics will be used to design a ventilation system for the vehicle (see [[HVAC]]), and [[intake]] system of the engine.
 
 
=== Kinematics ===
 
{{Main|Kinematics}}
 
'''Kinematics''' is the study of the motion of bodies (objects) and systems (groups of objects), while ignoring the forces that cause the motion.  The movement of a crane and the oscillations of a piston in an engine are both simple kinematic systems.  The crane is a type of open kinematic chain, while the piston is part of a closed [[four bar linkage]].
 
 
 
Mechanical engineers typically use kinematics in the design and analysis of [[mechanisms]].  Kinematics can be used to find the possible range of motion for a given mechanism, or, working in reverse, can be used to design a mechanism that has a desired range of motion.
 
 
 
 
 
  
 
=== Structural analysis ===
 
=== Structural analysis ===
{{Main|Structural analysis}}
+
'''Structural analysis''' is the branch of engineering devoted to examining why and how parts fail. Structural failures occur in two general modes: Static failure and fatigue failure. ''Static structural failure'' occurs when, upon being loaded (having a force applied) the object being analyzed either breaks or is deformed [[plastic deformation|plastically]], depending on the criterion for failure. ''Fatigue failure'' occurs when an object fails after a number of repeated loading and unloading cycles. Fatigue failure occurs because of imperfections in the object.  
{{Main|Failure analysis}}
 
 
 
'''Structural analysis''' is the branch of mechanical engineering devoted to examining why and how objects fail. Structural failures occur in two general modes: static failure, and fatigue failure. ''Static structural failure'' occurs when, upon being loaded (having a force applied) the object being analyzed either breaks or is deformed [[plastic deformation|plastically]], depending on the criterion for failure. ''Fatigue failure'' occurs when an object fails after a number of repeated loading and unloading cycles. Fatigue failure occurs because of imperfections in the object: a microscopic crack on the surface of the object, for instance, will grow slightly with each cycle (propagation) until the crack is large enough to cause failure.  
 
  
Failure is not simply defined as when a part breaks, however; it is defined as when a part does not operate as intended. Some systems, such as the perforated top sections of some plastic bags, are designed to break. If these systems do not break, failure analysis might be employed to determine the cause.
+
Failure is defined as when a part does not operate as intended. Some systems, such as the perforated top sections of some plastic bags, are designed to break. If these systems do not break, failure analysis might be employed to determine the cause.
  
Structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure. Engineers may use various books and handbooks such as those published by ASM [http://www.asminternational.org/Template.cfm?Section=Bookstore&Template=/ecommerce/ecomdefault.cfm] to aid them in determining the type of failure and possible causes.
+
Structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure. Engineers may use various books and handbooks such as those published by ASM to aid them in determining the type of failure and possible causes.
  
 
Structural analysis may be used the office when designing parts, in the field to analyze failed parts, or in laboratories where parts might undergo controlled failure tests.
 
Structural analysis may be used the office when designing parts, in the field to analyze failed parts, or in laboratories where parts might undergo controlled failure tests.
Line 110: Line 56:
 
=== Thermodynamics===
 
=== Thermodynamics===
 
{{Main|Thermodynamics}}
 
{{Main|Thermodynamics}}
 +
'''[[Thermodynamics]]''' is the study of energy, and its relationship with properties of matter (Moran and Shapiro, 1996). It is both a branch of physics and an engineering science (Moran and Shapiro, 1996). Engineers, being generally interested in systems and how they interact with their surroundings, extend thermodynamics to the study of systems through which matter flows (Moran and Shapiro, 1996).
  
'''[[Thermodynamics]]''' is an applied science used in several branches of engineering, including Mechanical and [[Chemical Engineering]]. At its simplest, thermodynamics is the study of energy, its use, and its transformation through a [[physical system|system]].  Typically, engineering thermodynamics is concerned with changing energy from one form to another.  As an example, automotive engines convert chemical energy ([[enthalpy]]) from the fuel into heat, and then into mechanical work that eventually turns the wheels.
+
Thermodynamic principles are used by mechanical engineers in the fields of [[heat transfer]], [[thermofluids]], and [[energy conversion]] and are considered in the design of [[engine]]s and [[power plant]]s, heating, ventilation, and air-conditioning ([[HVAC]]) systems, [[heat exchanger]]s, [[heat sink]]s, [[refrigeration]], [[Thermal insulation|insulation]], life support systems, and other applications that require the movement of energy, work, matter, or the conversion of one into any of the others (Moran and Shapiro, 1996).
 
 
Thermodynamic principles are used by mechanical engineers in the fields of [[heat transfer]], [[thermofluids]], and [[energy conversion]]. Mechanical engineers  consider thermodynamics in the design of [[engine]]s and [[power plant]]s, heating, ventilation, and air-conditioning ([[HVAC]]) systems, [[heat exchanger]]s, [[heat sink]]s, [[radiator]]s, [[refrigeration]], [[Thermal insulation|insulation]], and other applications that require the movement of energy, work, or the conversion of one into the other.
 
  
 
=== Drafting ===
 
=== Drafting ===
[[Image:Mech 2 3D.png|thumb|right|A CAD model of a [[mechanical seal|mechanical double seal]]]]
+
[[Image:Mech 2 3D.png|thumb|right|A CAD model of a double [[mechanical seal]].]]
{{main|Technical drawing}}
 
'''[[Technical drawing|Drafting]]''' or technical drawing is the means by which mechanical engineers create instructions for [[manufacture|manufacturing]] parts.  A technical drawing can be a computer model or hand-drawn schematic showing all the dimensions necessary to manufacture a part, as well as assembly notes, a list of required materials, and other pertinent information. A U.S. mechanical engineer or skilled worker who creates technical drawings may be referred to as a drafter or draftsman.  Drafting has historically been a two-dimensional process, but recent [[CAD|Computer-Aided Designing (CAD)]] programs have begun to allow the designer to create in three dimensions.
 
  
Instructions for manufacturing a part must be fed to the necessary machinery, either manually, through programmed instructions, or through the use of a [[CAM|Computer-Aided Manufacturing (CAM)]] or combined CAD/CAM program.  Optionally, an engineer may also have a part manually manufactured using the technical drawings, but this is becoming an increasing rarity, except in the areas of applied [[thermal spray|spray coatings]], finishes, and other processes that cannot economically be done by a machine.
+
'''[[Technical drawing|Drafting]]''' or technical drawing is used in nearly every other branch of engineering and architecture. It is the means by which mechanical engineers create instructions for [[manufacture|manufacturing]] parts. A technical drawing can be a computer model or hand-drawn schematic showing all the dimensions necessary to manufacture a part, as well as assembly notes, a list of required materials, and other pertinent information. A U.S. mechanical engineer or skilled worker who creates technical drawings may be referred to as a drafter or draftsman. Drafting has historically been a two-dimensional process, but recent [[CAD|Computer-Aided Designing (CAD)]] programs have begun to allow the designer to create a part in three dimensions.
  
Drafting is used in nearly every subdiscipline of mechanical engineering, and by many other branches of engineering and architecture. Three-dimensional models created using CAD software are also commonly used in [[Finite element analysis]] (FEA) and [[Computational fluid dynamics]] (CFD).
+
Instructions for manufacturing a part must be fed to the necessary machinery, either manually, through programmed instructions, or through the use of a [[CAM|Computer-Aided Manufacturing (CAM)]] or combined CAD/CAM program. Optionally, an engineer may also have a part manually manufactured using the technical drawings, but this is becoming an increasing rarity, except in the areas of applied [[thermal spray|spray coatings]], finishes, and other processes that cannot economically be done by a machine. Three-dimensional models created using CAD software are also commonly used in [[Finite element analysis]] (FEA) and [[Computational fluid dynamics]] (CFD).
  
===List of Cross-Disciplinary Topics===
+
===List of cross-disciplinary topics===
The following is a list of some cross-disciplinary topics within mechanical engineering. These topics may be considered ''specialized'' because they are not typically part of undergraduate mechanical engineering requirements, or require training beyond an undergraduate level to be useful.
+
The following is a list of some cross-disciplinary topics within mechanical engineering. These topics require expertise in other fields of engineering in addition to a mechanical background.
  
*[[Acoustical engineering]]
 
*[[Aerospace engineering]]
 
*[[Alternative energy]]
 
 
*[[Automotive engineering]]
 
*[[Automotive engineering]]
 
*[[Biomedical engineering]]
 
*[[Biomedical engineering]]
*[[Computer-aided engineering]]
+
*Engineering-based [[programming]]
 
*[[HVAC|Heating, ventilation, and air conditioning (HVAC)]]
 
*[[HVAC|Heating, ventilation, and air conditioning (HVAC)]]
*[[Nanotechnology]]
+
*[[Mechatronics]]
*[[Nuclear engineering]]
 
*[[Piping]]
 
 
*[[Power plant|Power generation]]
 
*[[Power plant|Power generation]]
*Engineering-based [[programming]]
 
  
Other disciplines that overlap with mechanical engineering in one or more areas include [[aerospace engineering]], [[architectural engineering]], [[chemical engineering]], [[civil engineering]], [[electrical engineering]], [[engineering physics]], [[industrial engineering]], [[nuclear engineering]], [[systems engineering]], and many other [[Fields of engineering]].
+
== Education ==
 
+
A Bachelor of Science (BS) / Bachelor of Arts (BA) degree in Mechanical Engineering is offered at many universities in most [[industrialization|industrialized]] nations. In the U.S., Japan, Germany, Canada, Taiwan, South Korea, South Africa, and many other countries, Mechanical Engineering programs typically take four to five years, and result in a Bachelor of Science in Mechanical Engineering or BSc (Mech. Eng.). In some countries like Singapore, Malaysia, India, and Nigeria, a four-year Bachelor of Science (BSc) / Bachelor of Engineering (BEng) degree with Honors (Hons) in Mechanical Engineering is offered. In Australia and New Zealand, requirements are typically for a four-year Bachelor of Engineering (BE or BEng) degree, equivalent to the British MEng level. A BEng degree differ from a BSc degree in that the students obtain a broader education consisting of information relevant to various engineering disciplines.  
===='''Mechatronics'''====
 
Mechatronics is an interdisciplinary branch of mechanical engineering, [[electrical engineering]] and [[software engineering]] that is concerned with integrating electrical and mechanical engineering to create [[hybrid]] systems. In this way, machines can be automated through the use of [[electric motor]]s, [[servomechanism|servo-mechanisms]], and other electrical systems in conjunction with special software. A common example of a mechatronics system is a CD-ROM drive. Mechanical systems open and close the drive, spin the CD and move the laser, while an optical system reads the data on the CD and converts it to [[bit]]s.  Integrated software controls the process and communicates the contents of the CD to the computer.
 
Mechatronics is currently used in the following areas of engineering:
 
*[[Automation]], and [[robotics]].
 
*[[servomechanism|Servo-Mechanics]]
 
*[[sensor|Sensing]] and [[control system|Control Systems]]
 
*[[Automotive engineering]], in the design of subsystems such as [[anti-lock braking system]]s, as well as engine design, gear design, and other moving parts.
 
*[[Computer engineering]], in the design of mechanisms such as hard drives, CD-ROM drives, etc.
 
 
 
'''Robotics''' is the application of mechatronics to create robots, which perform tasks that are dangerous, unpleasant, or repetitive.  These robots may be of any shape and size, but all are preprogrammed and interact physically with the world. To create a robot, an engineer typically employs kinematics (to determine the robot's range of motion) and mechanics (to determine the [[Stress (physics)|stress]]es within the robot).
 
  
Robots are used extensively in [[Industrial engineering]].  They allow businesses to save money on labor and perform tasks that are either too dangerous or too precise for humans to perform them economically. Many companies employ [[assembly lines]] of robots, and some factories are so roboticized that they can run [[Lights out (manufacturing)|by themselves]].  Outside the factory, robots have been employed in bomb disposal, [[space exploration]], and many other fields.  Robots are also sold for various residential applications.
+
Most Mechanical Engineering programs in the U.S. are [[School accreditation|accredited]] by the [[Accreditation Board for Engineering and Technology]] (ABET) to ensure similar course requirements and standards between universities. The ABET [http://www.abet.org web site] lists 276 accredited Mechanical Engineering programs as of June 19, 2006.<ref>ABET, [http://www.abet.org/accrediteac.asp Searchable database of accredited engineering programs.] Retrieved June 19, 2006.</ref> Mechanical Engineering programs in Canada are accredited by the Canadian Engineering Accreditation Board (CEAB).<ref>CEAB, [http://www.engineerscanada.ca/e/acc_programs_1.cfm Accredited engineering programs in Canada.] Retrieved April 18, 2007.</ref>
 
 
== See also ==
 
  
* [[List of mechanical engineering topics]]
+
Some Mechanical Engineers go on to pursue a postgraduate degree such as a [[Master of Engineering]], [[Master of Science]], [[Master of Engineering Management]] (MEng.Mgt, MEM), a [[Doctor of Philosophy]] in Engineering (DEng, PhD) or an [[Engineer's degree]]. The Master's and Engineer's degrees may consist of either [[research]], [[coursework]] or a mixture of the two. The Doctorate of Philosophy consists of a significant research component and is often viewed as the entry point to [[academia]].<ref>MIT, [http://www-me.mit.edu/GradProgram/GradDegrees.htm Types of post-graduate degrees offered at MIT.] Retrieved June 19, 2006.</ref>
* [[Mechanical engineering technology]]
 
* [[Fields of engineering]]
 
* [[Simple machine]]
 
* [[List of mechanical engineers]]
 
* [[List of inventors]]
 
* [[Patent]]
 
  
==Notes==
+
Mechanical engineering programs generally cover the same fundamental subjects. Universities offering [[School accreditation|accredited]] programs in mechanical engineering are required to offer several major subjects of study, as determined by the parent nation's accreditation board. This is to ensure a minimum level of competence among graduating engineers and to inspire confidence in the engineering profession as a whole. The specific courses required to graduate, however, may differ from program to program. Universities will often combine multiple subjects into a single class or split a subject into multiple classes, depending on the faculty available and the University's major area(s) of research. Fundamental subjects of mechanical engineering include:
<references />
 
  
== Related journals ==
+
*[[Mechanics]], which includes specific topics such as [[statics]] & [[dynamics (mechanics)|dynamics]], [[strength of materials]], [[solid mechanics]], [[fluid mechanics]]/[[fluid dynamics]], [[hydraulics]] and [[pneumatics]], and [[mechanism]] design (which includes [[kinematics]])
* ''Experimental Heat Transfer[http://www.tandf.co.uk/journals/titles/08916152.asp]''
+
*[[thermodynamics]], which eventually covers topics such as [[heat transfer]], [[energy conversion]], and [[refrigeration]] / [[air conditioning]],
* ''Heat Transfer Engineering[http://www.tandf.co.uk/journals/titles/01457632.asp]''
+
*engineering [[Engineering drawing|drafting]] and [[design]], which covers philosophy and methodology of design, [[CAD]] (usually including [[Solid modeling]]), manufacturing technology and processes, [[instrumentation]] and [[measurement]], and [[computer-aided manufacturing|CAM]].<ref>University of Tulsa, [http://www.me.utulsa.edu/Undergraduate.html Required ME Courses.] Retrieved June 19, 2006.</ref>Harvard University, <ref>[http://www.deas.harvard.edu/undergradstudy/engineeringsciences/mechanical/index.html Harvard Mechanical Engineering Page.] Retrieved June 19, 2006.</ref>
* ''International Journal for Computational Methods in Engineering Science and Mechanics [http://www.tandf.co.uk/journals/titles/15502287.asp]''
 
* ''International Journal of Optomechatronics[http://www.tandf.co.uk/journals/titles/15599612.asp]''
 
* ''Machining Science and Technology[http://www.tandf.co.uk/journals/titles/10910344.asp]''
 
* ''Materials and Manufacturing Processes[http://www.tandf.co.uk/journals/titles/10426914.asp]''
 
* ''Mechanics Based Design of Structures and Machines[http://www.tandf.co.uk/journals/titles/15397734.asp]''
 
* ''Mechanics of Advanced Materials and Structures[http://www.tandf.co.uk/journals/titles/15376494.asp]''
 
* ''Nanoscale and Microscale Thermophysical Engineering[http://www.tandf.co.uk/journals/titles/15567265.asp]''
 
* ''Numerical Heat Transfer, Part A[http://www.tandf.co.uk/journals/titles/10407782.asp]''
 
* ''Numerical Heat Transfer, Part B[http://www.tandf.co.uk/journals/titles/10407790.asp]''
 
* ''Tribology Transactions[http://www.tandf.co.uk/journals/titles/10402004.asp]''
 
* ''Journal of Fluids Engineering[http://scitation.aip.org/ASMEJournals/Fluids/]''
 
  
==References==
+
Mechanical engineers are also expected to understand and be able to apply basic concepts from chemistry, [[chemical engineering]], [[electrical engineering]], and physics. Mechanical engineering programs include several semesters of [[calculus]], as well as advanced mathematical concepts including [[differential equations]] and [[partial differential equations]], [[linear algebra|linear]] and [[modern algebra]], and [[differential geometry]], among others.
  
*Burstall, Aubrey F. (1965). A History of Mechanical Engineering. The MIT Press. ISBN 0-262-52001-X.
+
In addition to the core mechanical engineering curriculum, most mechanical engineering programs offer more specialized programs and classes such as [[mechatronics]] / [[robotics]], [[transport]] and [[logistics]], [[cryogenics]], [[fuel]] technology, [[automotive engineering]], [[biomechanics]], [[oscillation|vibration]], [[optics]], and others, if a separate department does not exist for these subjects.
  
*Pahl, G., and W. Beitz, Ken Wallace Ed. 1988. ''Engineering Design: A Systematic Approach.'' Guildford and King's Lynn: Biddles Ltd. ISBN 3-540-50442-7
+
Most mechanical engineering programs also require various research or design projects to gain practical problem-solving experience. Mechanical engineering students usually hold one or more [[internship]]s while studying, though this is not typically mandated by the university.
  
*Hindhede, Zimmerman, Hopkins, Erisman, Hull, and Lang. 1983. ''Machine Design Fundamentals: A Practical Approach.'' New York: John Wiley & Sons. ISBN 0-471-04136-X
+
==Licensing==
 +
After earning their degrees, engineers may seek [[licensing|license]] with a state or national government. The purpose of this process is to ensure that engineers possess the necessary technical knowledge and real-world experience to engineer safely. Once certified, the engineer is given the title of ''Professional Engineer'' (in the United States, Canada, Japan, South Korea, and South Africa), ''Chartered Engineer'' (in the UK, Ireland, India and Zimbabwe), ''Chartered Professional Engineer'' (in Australia and New Zealand), or ''European Engineer'' (much of the European Union). Not all mechanical engineers choose to become licensed; those that do can be distinguished as Chartered/Professional Engineers by the [[post-nominal letters|post-nominal title]] '''PE''' or '''CEng,''' as in: Ryan Jones, PE.
  
== External links ==
+
In the U.S., to become a licensed Professional Engineer, an Engineer must pass the comprehensive ''FE (Fundamentals of Engineering)'' exam, work a given number of years (varies state by state) as an ''Engineering Intern (EI)'' or ''Engineer-in-Training (EIT)'', pass the ''Principles and Practice'' or ''PE (Practicing Engineer or Professional Engineer)'' exam. These requirements and steps of this process are set forth by the [[National Council of Examiners for Engineering and Surveying]] (NCEES), a national non-profit organization representing all states.
  
* American Society of Mechanical Engineers - http://www.asme.org/ - An organization of American mechanical engineers. Accessed '' July 7, 2007 ''.
+
In the UK, current graduates require a MSc, MEng or BEng (Hons) in order to become chartered through the Institution of Mechanical Engineers. In most modern countries, certain engineering tasks, such as the design of bridges, electric power plants, and chemical plants, must be approved by a [[Professional Engineer]] or a [[Chartered Engineer]]. In the USA and Canada, only a licensed engineer may seal engineering work for public and private clients."<ref>NSPE, [http://www.nspe.org/lc1-why.asp Why Should You Get Licensed?] Retrieved July 11, 2005.</ref>  This requirement is written into state and provincial legislation, such as Quebec's Engineer Act.<ref>Quebec Statutes and Regulations (CanLII), [http://www.canlii.org/qc/laws/sta/i-9/20050616/whole.html Engineers Act.] Retrieved July 24, 2005.</ref> In other countries, such as Australia, no such legislation exists; however, practically all certifying bodies maintain a [[code of ethics]] independent of legislation that they expect all members to abide by or risk expulsion.<ref>Online Ethics Center, [http://onlineethics.org/codes/ Codes of Ethics and Conduct.] Retrieved July 24, 2005.</ref>
  
*Canadian Society of Mechanical Engineers - http://www.csme-scgm.ca/ - An organization of Canadian mechanical engineers. Accessed '' July 16, 2007 ''.
+
==Workforce and educational statistics==
 +
The total number of engineers employed in the U.S. in 2004 was roughly 1.4 million. Of these, 226,000 were mechanical engineers (15.6 percent), second only in size to civil engineers at 237,000 (16.4 percent). The total number of mechanical engineering jobs in 2004 was projected to grow 9 to 17 percent, with average starting salaries being $50,236 with a bachelor's degree, $59,880 with a master's degree, and $68,299 with a doctorate degree. This places mechanical engineering at 8th of 14 among engineering bachelors degrees, 4th of 11 among masters degrees, and 6th of 7 among doctorate degrees in average annual salary.<ref>U.S. Department of Labor, [http://www.bls.gov/oco/ocos027.htm#earnings Bureau of Labor Statistics, Engineering.] Retrieved June 19, 2006.</ref>  The median annual earning of mechanical engineers in the U.S. workforce is roughly $63,000. This number is highest when working for the government ($72,500), and lowest when doing general purpose machinery manufacturing in the private sector ($55,850).
  
*Chinese Mechanical Engineering Society - http://www.cmes.org/cmes_en/index.html (English), http://www.cmes.org/cmes/index.jsp (Traditional Chinese) - An organization of mainland Chinese mechanical engineers. Accessed '' July 16, 2007''.
+
Canadian engineers make an average of $28.10 per hour with 3 percent unemployed. The average for all occupations is $16.91 per hour with 5 percent unemployed. Eight percent of these engineers are self-employed, and since 1994 the proportion of female engineers has remained constant at 4 percent.<ref>Job Futures, [http://www.jobfutures.ca/noc/2132p4.shtml Engineers.] Retrieved June 19, 2006.</ref>
  
* Ethiopian Society of Mechanical Engineers - http://africantech.home.att.net/ESME/ESME.htm - Online articles about technology suited to developing countries. Accessed '' July 16, 2007 ''.
+
== See also ==
 +
* [[Aircraft]]
 +
* [[Automobile]]
 +
* [[Machine]]
 +
* [[Patent]]
 +
* [[Robot]]
  
*Institution of Mechanical Engineers - http://www.imeche.org/ -The United Kingdom's qualifying body for mechanical engineers.
+
==Notes==
 +
<references />
  
* Japanese Society of Mechanical Engineers - http://www.jsme.or.jp/English/ (English link), http://www.jsme.or.jp/ (Japanese link)- An organization of Japanese mechanical engineers. Accessed '' July 16, 2007 ''.
+
==References==
 +
*Burstall, Aubrey F. 1965. ''A History of Mechanical Engineering''. The MIT Press. ISBN 0-262-52001-X.
 +
*Pahl, G., and W. Beitz, Ken Wallace (eds.). 1988. ''Engineering Design: A Systematic Approach.'' Guildford and King's Lynn: Biddles Ltd. ISBN 3-540-50442-7.
 +
*Hindhede, Zimmerman, Hopkins, Erisman, Hull, and Lang. 1983. ''Machine Design Fundamentals: A Practical Approach.'' New York: John Wiley & Sons. ISBN 0-471-04136-X.
 +
*Meriam, J. L. 1966. ''Statics and Dynamics''. New York: John Wiley. ISBN 0-471-24167-9.
 +
*Daugherty, Robert L., Joseph B. Franzini, and E. John Finnemore. ''Fluid Mechanics with Engineering Applications,'' 8th ed. New York: McGraw-Hill Book Company. ISBN 0-07-015441-4.
 +
*Moran, Micheal J., and Howard N. Shapiro. ''Fundamentals of Engineering Thermodynamics,'' 3rd ed. New York: John Wiley and Sons, Inc. ISBN 0-471-07681-3.
  
* Korean Society of Mechanical Engineers - http://eng.ksme.or.kr/ (English link), http://www.ksme.or.kr/ (Korean link) - An organization of Korean mechanical engineers
+
== External links ==
 +
All links retrieved November 8, 2022.
  
* Mechanical Engineering Articles - http://www.mechanicalengineering.cc - Mechanical Engineering Knowledge Base. Accessed '' June 16, 2007 ''.
+
* [http://www.imeche.org/ Institution of Mechanical Engineers] -The United Kingdom's qualifying body for mechanical engineers.
 +
* [http://www.ncees.org/ National Council of Examiners of Engineering and Surveying (NCEES)] - a non-profit organization made up of the engineering and surveying licensing boards of all U.S. states and territories.
 +
* [http://www.asme.org/ American Society of Mechanical Engineers]
 +
* [http://www.csme-scgm.ca/ Canadian Society of Mechanical Engineers]
 +
* [http://www.jsme.or.jp/English/ Japanese Society of Mechanical Engineers]
 +
* [http://eng.ksme.or.kr/ Korean Society of Mechanical Engineers]
  
 
{{Technology}}
 
{{Technology}}
  
 
[[Category:Physical sciences]]
 
[[Category:Physical sciences]]
[[Category:Engineering disciplines]]
+
[[Category:Engineering]]
  
 
{{credit|140833169}}
 
{{credit|140833169}}

Latest revision as of 03:49, 9 November 2022

Mechanical engineers design and build engines and power plants…


Mechanical Engineering is the engineering discipline that involves application of the principles of physics for the analysis, design, manufacture, and maintenance of mechanical systems. It requires a solid understanding of concepts including mechanics, thermodynamics, and engineering design; as well as solid grounding in physics and math. Mechanical engineers use these principles and others in the design and analysis of automobiles, heating and cooling systems, industrial equipment, and more.

Structures and vehicles of all sizes…
And moving mechanisms, machines, and robots.

History

The beginnings of mechanical engineering go back to the craftsmen and inventors of the first tools and basic machineries powered by human or animal labor, water or wind energy, or their combination. Mechanical engineering as a field of engineering study, however, did not start until the advent of the Industrial Revolution with the demand for the steam engine. The first professional society for mechanical engineers, the Institute of Mechanical Engineers, was formed in the United Kingdom in 1847. Since then, advancements in the field of mechanical engineering have lead to such breakthroughs as the internal combustion engine, which made heavier-than-air powered flight possible and would also lead to the development of the automobile, air conditioning, robotics, and more.

Process of mechanical engineering

The process of engineering design is, as described by Pahl and Beitz, "the intellectual attempt to meet certain demands in the best way possible…. an engineering activity that impinges on nearly every sphere of human life, relies on the discoveries and laws of science, and creates the conditions for applying these laws to the manufacture of useful products" (Pahl and Beitz, 1988).

There are generally four main phases to engineering design:

  • Clarification of Task
  • Conceptual Design
  • Embodiment Design
  • Detail Design

Basic aspects of design include:

  • Design Concept
  • Systems Engineering (function, safety, reliability, maintainability)
  • Design of Elements (size, shape, material, life)
  • Manufacturability (ease/difficulty with which a part can be made)
  • Cost (planning, materials, construction)

Tools and work

Modern analysis and design processes in mechanical engineering are aided by various computational tools including finite element analysis (FEA), computational fluid dynamics (CFD), computer-aided design (CAD)/computer-aided manufacturing (CAM) and Failure Modes & Effect Analysis (FMEA). These modern processes facilitate engineers to model (create a 3D object in a computer), analyze the quality of design, and so on, before a prototype is created. By this the invention and experimenting with new designs becomes very easy and can be done without any money invested in tooling and prototypes. Simple models can be free and instantaneous, but complicated models, like those describing the mechanics of living tissue, can require years to develop, and the actual computation can be very processor intensive, requiring powerful computers and a lot of cycle time.

Mechanical engineering topics

The field of mechanical engineering can be thought of as a collection of many mechanical engineering subdisciplines. Several of these typically taught at the undergraduate level are listed below, with a brief explanation and common applications of each. Most work that a mechanical engineer does uses skills and techniques from several of these subdisciplines, as well as cross-over work with other engineering disciplines.

Mechanics

Mohr's circle, a common tool to study stresses in a mechanical element.

Mechanics is the physical science that deals with the state of rest or motion of bodies under forces (Meriam, 1966). It is the oldest of the physical sciences, and its early history is synonymous with the beginnings of engineering itself (Meriam, 1966). Subdisciplines of mechanics include:

  • Statics, the study of the equilibrium of bodies under the actions of forces (Meriam, 1966).
  • Kinetics, also known as Dynamics, the study of the actions of forces on bodies to their resulting motions (Meriam, 1966).
  • Kinematics, the study of the motion of bodies without reference to the forces involved (Meriam, 1966).
  • Mechanics of materials, also known as strength of materials or mechanics of deformable bodies; the branch of applied mechanics that deals with the behavior of solid bodies subjected to various types of loading (Gere, 2001).
  • Continuum mechanics is a method of applying mechanics that assumes that objects are continuous. It is contrasted by discrete mechanics.
  • Fluid Mechanics, the study of how liquids and gases (fluids) react to forces, and is based on the same principles as the mechanics of solids. Fluid mechanics is a subdiscipline of continuum mechanics, and can be further split into fluid statics and fluid dynamics. The application of fluid mechanics in engineering is called hydraulics (Daugherty, Franzini, and Finnemore, 1985).

Mechanics is used extensively in the design and analysis phases of a project. In vehicle design, statics will be employed in the design of the frame of the vehicle, in order to evaluate where and how the stresses will interact. Dynamics might be used when designing the car's engine, to evaluate the forces on the pistons and cams as the engine cycles. Mechanics of materials will be used to choose appropriate materials for each component of the frame and engine. Fluid mechanics will be used to design a ventilation system for the vehicle (see HVAC), and intake system of the engine.

Structural analysis

Structural analysis is the branch of engineering devoted to examining why and how parts fail. Structural failures occur in two general modes: Static failure and fatigue failure. Static structural failure occurs when, upon being loaded (having a force applied) the object being analyzed either breaks or is deformed plastically, depending on the criterion for failure. Fatigue failure occurs when an object fails after a number of repeated loading and unloading cycles. Fatigue failure occurs because of imperfections in the object.

Failure is defined as when a part does not operate as intended. Some systems, such as the perforated top sections of some plastic bags, are designed to break. If these systems do not break, failure analysis might be employed to determine the cause.

Structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure. Engineers may use various books and handbooks such as those published by ASM to aid them in determining the type of failure and possible causes.

Structural analysis may be used the office when designing parts, in the field to analyze failed parts, or in laboratories where parts might undergo controlled failure tests.

Thermodynamics

Main article: Thermodynamics

Thermodynamics is the study of energy, and its relationship with properties of matter (Moran and Shapiro, 1996). It is both a branch of physics and an engineering science (Moran and Shapiro, 1996). Engineers, being generally interested in systems and how they interact with their surroundings, extend thermodynamics to the study of systems through which matter flows (Moran and Shapiro, 1996).

Thermodynamic principles are used by mechanical engineers in the fields of heat transfer, thermofluids, and energy conversion and are considered in the design of engines and power plants, heating, ventilation, and air-conditioning (HVAC) systems, heat exchangers, heat sinks, refrigeration, insulation, life support systems, and other applications that require the movement of energy, work, matter, or the conversion of one into any of the others (Moran and Shapiro, 1996).

Drafting

A CAD model of a double mechanical seal.

Drafting or technical drawing is used in nearly every other branch of engineering and architecture. It is the means by which mechanical engineers create instructions for manufacturing parts. A technical drawing can be a computer model or hand-drawn schematic showing all the dimensions necessary to manufacture a part, as well as assembly notes, a list of required materials, and other pertinent information. A U.S. mechanical engineer or skilled worker who creates technical drawings may be referred to as a drafter or draftsman. Drafting has historically been a two-dimensional process, but recent Computer-Aided Designing (CAD) programs have begun to allow the designer to create a part in three dimensions.

Instructions for manufacturing a part must be fed to the necessary machinery, either manually, through programmed instructions, or through the use of a Computer-Aided Manufacturing (CAM) or combined CAD/CAM program. Optionally, an engineer may also have a part manually manufactured using the technical drawings, but this is becoming an increasing rarity, except in the areas of applied spray coatings, finishes, and other processes that cannot economically be done by a machine. Three-dimensional models created using CAD software are also commonly used in Finite element analysis (FEA) and Computational fluid dynamics (CFD).

List of cross-disciplinary topics

The following is a list of some cross-disciplinary topics within mechanical engineering. These topics require expertise in other fields of engineering in addition to a mechanical background.

  • Automotive engineering
  • Biomedical engineering
  • Engineering-based programming
  • Heating, ventilation, and air conditioning (HVAC)
  • Mechatronics
  • Power generation

Education

A Bachelor of Science (BS) / Bachelor of Arts (BA) degree in Mechanical Engineering is offered at many universities in most industrialized nations. In the U.S., Japan, Germany, Canada, Taiwan, South Korea, South Africa, and many other countries, Mechanical Engineering programs typically take four to five years, and result in a Bachelor of Science in Mechanical Engineering or BSc (Mech. Eng.). In some countries like Singapore, Malaysia, India, and Nigeria, a four-year Bachelor of Science (BSc) / Bachelor of Engineering (BEng) degree with Honors (Hons) in Mechanical Engineering is offered. In Australia and New Zealand, requirements are typically for a four-year Bachelor of Engineering (BE or BEng) degree, equivalent to the British MEng level. A BEng degree differ from a BSc degree in that the students obtain a broader education consisting of information relevant to various engineering disciplines.

Most Mechanical Engineering programs in the U.S. are accredited by the Accreditation Board for Engineering and Technology (ABET) to ensure similar course requirements and standards between universities. The ABET web site lists 276 accredited Mechanical Engineering programs as of June 19, 2006.[1] Mechanical Engineering programs in Canada are accredited by the Canadian Engineering Accreditation Board (CEAB).[2]

Some Mechanical Engineers go on to pursue a postgraduate degree such as a Master of Engineering, Master of Science, Master of Engineering Management (MEng.Mgt, MEM), a Doctor of Philosophy in Engineering (DEng, PhD) or an Engineer's degree. The Master's and Engineer's degrees may consist of either research, coursework or a mixture of the two. The Doctorate of Philosophy consists of a significant research component and is often viewed as the entry point to academia.[3]

Mechanical engineering programs generally cover the same fundamental subjects. Universities offering accredited programs in mechanical engineering are required to offer several major subjects of study, as determined by the parent nation's accreditation board. This is to ensure a minimum level of competence among graduating engineers and to inspire confidence in the engineering profession as a whole. The specific courses required to graduate, however, may differ from program to program. Universities will often combine multiple subjects into a single class or split a subject into multiple classes, depending on the faculty available and the University's major area(s) of research. Fundamental subjects of mechanical engineering include:

  • Mechanics, which includes specific topics such as statics & dynamics, strength of materials, solid mechanics, fluid mechanics/fluid dynamics, hydraulics and pneumatics, and mechanism design (which includes kinematics)
  • thermodynamics, which eventually covers topics such as heat transfer, energy conversion, and refrigeration / air conditioning,
  • engineering drafting and design, which covers philosophy and methodology of design, CAD (usually including Solid modeling), manufacturing technology and processes, instrumentation and measurement, and CAM.[4]Harvard University, [5]

Mechanical engineers are also expected to understand and be able to apply basic concepts from chemistry, chemical engineering, electrical engineering, and physics. Mechanical engineering programs include several semesters of calculus, as well as advanced mathematical concepts including differential equations and partial differential equations, linear and modern algebra, and differential geometry, among others.

In addition to the core mechanical engineering curriculum, most mechanical engineering programs offer more specialized programs and classes such as mechatronics / robotics, transport and logistics, cryogenics, fuel technology, automotive engineering, biomechanics, vibration, optics, and others, if a separate department does not exist for these subjects.

Most mechanical engineering programs also require various research or design projects to gain practical problem-solving experience. Mechanical engineering students usually hold one or more internships while studying, though this is not typically mandated by the university.

Licensing

After earning their degrees, engineers may seek license with a state or national government. The purpose of this process is to ensure that engineers possess the necessary technical knowledge and real-world experience to engineer safely. Once certified, the engineer is given the title of Professional Engineer (in the United States, Canada, Japan, South Korea, and South Africa), Chartered Engineer (in the UK, Ireland, India and Zimbabwe), Chartered Professional Engineer (in Australia and New Zealand), or European Engineer (much of the European Union). Not all mechanical engineers choose to become licensed; those that do can be distinguished as Chartered/Professional Engineers by the post-nominal title PE or CEng, as in: Ryan Jones, PE.

In the U.S., to become a licensed Professional Engineer, an Engineer must pass the comprehensive FE (Fundamentals of Engineering) exam, work a given number of years (varies state by state) as an Engineering Intern (EI) or Engineer-in-Training (EIT), pass the Principles and Practice or PE (Practicing Engineer or Professional Engineer) exam. These requirements and steps of this process are set forth by the National Council of Examiners for Engineering and Surveying (NCEES), a national non-profit organization representing all states.

In the UK, current graduates require a MSc, MEng or BEng (Hons) in order to become chartered through the Institution of Mechanical Engineers. In most modern countries, certain engineering tasks, such as the design of bridges, electric power plants, and chemical plants, must be approved by a Professional Engineer or a Chartered Engineer. In the USA and Canada, only a licensed engineer may seal engineering work for public and private clients."[6] This requirement is written into state and provincial legislation, such as Quebec's Engineer Act.[7] In other countries, such as Australia, no such legislation exists; however, practically all certifying bodies maintain a code of ethics independent of legislation that they expect all members to abide by or risk expulsion.[8]

Workforce and educational statistics

The total number of engineers employed in the U.S. in 2004 was roughly 1.4 million. Of these, 226,000 were mechanical engineers (15.6 percent), second only in size to civil engineers at 237,000 (16.4 percent). The total number of mechanical engineering jobs in 2004 was projected to grow 9 to 17 percent, with average starting salaries being $50,236 with a bachelor's degree, $59,880 with a master's degree, and $68,299 with a doctorate degree. This places mechanical engineering at 8th of 14 among engineering bachelors degrees, 4th of 11 among masters degrees, and 6th of 7 among doctorate degrees in average annual salary.[9] The median annual earning of mechanical engineers in the U.S. workforce is roughly $63,000. This number is highest when working for the government ($72,500), and lowest when doing general purpose machinery manufacturing in the private sector ($55,850).

Canadian engineers make an average of $28.10 per hour with 3 percent unemployed. The average for all occupations is $16.91 per hour with 5 percent unemployed. Eight percent of these engineers are self-employed, and since 1994 the proportion of female engineers has remained constant at 4 percent.[10]

See also

Notes

  1. ABET, Searchable database of accredited engineering programs. Retrieved June 19, 2006.
  2. CEAB, Accredited engineering programs in Canada. Retrieved April 18, 2007.
  3. MIT, Types of post-graduate degrees offered at MIT. Retrieved June 19, 2006.
  4. University of Tulsa, Required ME Courses. Retrieved June 19, 2006.
  5. Harvard Mechanical Engineering Page. Retrieved June 19, 2006.
  6. NSPE, Why Should You Get Licensed? Retrieved July 11, 2005.
  7. Quebec Statutes and Regulations (CanLII), Engineers Act. Retrieved July 24, 2005.
  8. Online Ethics Center, Codes of Ethics and Conduct. Retrieved July 24, 2005.
  9. U.S. Department of Labor, Bureau of Labor Statistics, Engineering. Retrieved June 19, 2006.
  10. Job Futures, Engineers. Retrieved June 19, 2006.

References
ISBN links support NWE through referral fees

  • Burstall, Aubrey F. 1965. A History of Mechanical Engineering. The MIT Press. ISBN 0-262-52001-X.
  • Pahl, G., and W. Beitz, Ken Wallace (eds.). 1988. Engineering Design: A Systematic Approach. Guildford and King's Lynn: Biddles Ltd. ISBN 3-540-50442-7.
  • Hindhede, Zimmerman, Hopkins, Erisman, Hull, and Lang. 1983. Machine Design Fundamentals: A Practical Approach. New York: John Wiley & Sons. ISBN 0-471-04136-X.
  • Meriam, J. L. 1966. Statics and Dynamics. New York: John Wiley. ISBN 0-471-24167-9.
  • Daugherty, Robert L., Joseph B. Franzini, and E. John Finnemore. Fluid Mechanics with Engineering Applications, 8th ed. New York: McGraw-Hill Book Company. ISBN 0-07-015441-4.
  • Moran, Micheal J., and Howard N. Shapiro. Fundamentals of Engineering Thermodynamics, 3rd ed. New York: John Wiley and Sons, Inc. ISBN 0-471-07681-3.

External links

All links retrieved November 8, 2022.

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.