Difference between revisions of "Tungsten" - New World Encyclopedia

From New World Encyclopedia
(original article imported from Wikipedia)
 
Line 120: Line 120:
 
* [http://www.vanderkrogt.net/elements/elem/w.html Elementymology & Elements Multidict by Peter van der Krogt - Tungsten]
 
* [http://www.vanderkrogt.net/elements/elem/w.html Elementymology & Elements Multidict by Peter van der Krogt - Tungsten]
  
 +
[[Category:Physical sciences]]
 +
[[Category:Chemistry]]
 
[[Category:Chemical elements]]
 
[[Category:Chemical elements]]
 
[[Category:Transition metals]]
 
[[Category:Transition metals]]
  
 +
<br>
 
[[ar:تنجستن]]
 
[[ar:تنجستن]]
 
[[ca:Tungstè]]
 
[[ca:Tungstè]]
Line 153: Line 156:
 
[[uk:Вольфрам]]
 
[[uk:Вольфрам]]
 
[[zh:钨]]
 
[[zh:钨]]
 +
 +
{{credit|30874768}}

Revision as of 22:32, 11 December 2005

This article is about the chemical element. "Tungsten" may also refer to the Tungsten Handheld PDA or to the Tungsten pickups.
74 tantalumtungstenrhenium
Mo

W

Sg
W-TableImage.png
periodic table
General
Name, Symbol, Number tungsten, W, 74
Chemical series transition metals
Group, Period, Block 6, 6, d
Appearance grayish white, lustrous
W,74.jpg
Atomic mass 183.84(1) g/mol
Electron configuration [Xe] 4f14 5d4 6s2
Electrons per shell 2, 8, 18, 32, 12, 2
Physical properties
Phase solid
Density (near r.t.) 19.25 g/cm³
Liquid density at m.p. 17.6 g/cm³
Melting point 3695 K
(3422 °C, 6192 °F)
Boiling point 5828 K
(5555 °C, 10031 °F)
Heat of fusion 52.31 kJ/mol
Heat of vaporization 806.7 kJ/mol
Heat capacity (25 °C) 24.27 J/(mol·K)
Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 3477 3773 4137 4579 5127 5823
Atomic properties
Crystal structure cubic body centered
Oxidation states 6, 5, 4, 3, 2
(mildly acidic oxide)
Electronegativity 2.36 (Pauling scale)
Ionization energies 1st: 770 kJ/mol
2nd: 1700 kJ/mol
Atomic radius 135 pm
Atomic radius (calc.) 193 pm
Covalent radius 146 pm
Miscellaneous
Magnetic ordering no data
Electrical resistivity (20 °C) 52.8 nΩ·m
Thermal conductivity (300 K) 173 W/(m·K)
Thermal expansion (25 °C) 4.5 µm/(m·K)
Speed of sound (thin rod) (r.t.) (annealed)
4620 m/s
Speed of sound (thin rod) (r.t.) 411 m/s
Shear modulus 161 GPa
Bulk modulus 310 GPa
Poisson ratio 0.28
Mohs hardness 7.5
Vickers hardness 3430 MPa
Brinell hardness 2570 MPa
CAS registry number 7440-33-7
Notable isotopes
Main article: Isotopes of tungsten
iso NA half-life DM DE (MeV) DP
180W 0.12% 1.8 E18 y α 2.516 176Hf
181W syn 121.2 d ε 0.188 181Ta
182W 26.50% > 1 E21 y α not observed
183W 14.3% > 1 E21 y α not observed
184W 30.64% > 1 E21 y α not observed
185W syn 75.1 d β- 0.433 185Re
186W 28.43% > 1 E21 y α not observed

Tungsten (formerly wolfram) is a chemical element that has the symbol W (L. wolframium) and atomic number 74. A very hard, heavy, steel-gray to white transition metal, tungsten is found in several ores including wolframite and scheelite and is remarkable for its robust physical properties. The pure form is used mainly in electrical applications but its many compounds and alloys are widely used in many applications (most notably in light bulb filaments and in space-age superalloys).

Notable characteristics

Pure tungsten is steel-gray to tin-white and is a hard metal. Tungsten can be cut with a hacksaw when it is very pure (it is brittle and hard to work when impure) and is otherwise worked by forging, drawing, or extruding. This element has the highest melting point (3422 °C) (6192 °F) , lowest vapor pressure and the highest tensile strength at temperatures above 1650 °C (3000 °F) of all metals. Its corrosion resistance is excellent and it can only be attacked slightly by most mineral acids. Tungsten metal forms a protective oxide when exposed to air but can be oxidized at high temperature. When alloyed in small quantities with steel, it greatly increases its hardness.

Applications

Tungsten is a metal with a wide range of uses, the largest of which is as tungsten carbide (W2C, WC) in cemented carbides. Cemented carbides (also called hardmetals) are wear-resistant materials used by the metalworking, mining, petroleum and construction industries. Tungsten is widely used in light bulb and vacuum tube filaments, as well as electrodes, because it can be drawn into very thin metal wires that have a high melting point. Other uses;

  • A high melting point also makes tungsten suitable for space-oriented and high temperature uses which include electrical, heating, and welding applications, notably in the GTAW process (also called TIG welding).
  • Hardness and density properties make this metal ideal for making heavy metal alloys that are used in armaments, heat sinks, and high-density applications, such as weights, counterweights and ballast keels for yachts.
  • The high density makes it an ideal ingredient for darts, normally 80% and sometimes up to 97%.
  • High-speed tool steels (Hastelloy, Stellite) are often alloyed with tungsten, with tungsten steels containing as much as 18% tungsten.
  • Superalloys containing this metal are used in turbine blades, tool steels, and wear-resistant alloy parts and coatings.
  • Composites are used as a substitute for lead in bullets and shot.
  • Tungsten chemical compounds are used in catalysts, inorganic pigments, and tungsten disulfide high-temperature lubricants which is stable to 500 °C (930 °F).
  • Since this element's thermal expansion is similar to borosilicate glass, it is used for making glass-to-metal seals.
  • It is used in kinetic energy penetrators, usually alloyed with nickel and iron or cobalt to form tungsten heavy alloys, as an alternative to depleted uranium.

Miscellaneous: Oxides are used in ceramic glazes and calcium/magnesium tungstates are used widely in fluorescent lighting. Crystal tungstates are used as scintillation detectors in nuclear physics and nuclear medicine. The metal is also used in X-ray targets and heating elements for electrical furnaces. Salts that contain tungsten are used in the chemical and tanning industries. Tungsten 'bronzes' (so-called due to the colour of the tungsten oxides) along with other compounds are used in paints. Tungsten Carbide has recently been used in the fashioning of jewelry due to its hypoallergenic nature and the fact that due to its extreme hardness it is not apt to lose its luster like other polished metals.

History

Tungsten powder

Tungsten (Swedish and Danish tung sten meaning "heavy stone", even though the current name for the element in Swedish is Wolfram) was first hypothesized to exist by Peter Woulfe in 1779 who examined wolframite and concluded that it must contain a new substance. In 1781 Carl Wilhelm Scheele ascertained that a new acid could be made from tungstenite. Scheele and Torbern Bergman suggested that it could be possible to obtain a new metal by reducing tungstic acid. In 1783 José and Fausto Elhuyar found an acid in wolframite that was identical to tungstic acid. In Spain later that year the brothers succeeded in isolating tungsten through reduction of this acid with charcoal. They are credited with the discovery of the element.

In World War II, tungsten played an enormous role in background political dealings. Portugal, as the main European source of the element, was put under pressure from both sides, because of its sources of wolframite ore. The resistance to high temperatures, as well as the extreme strength of its alloys, made the metal into a very important raw material for the weaponry industry.

Biological role

Enzymes called oxidoreductases use tungsten in a way that is similar to molybdenum by using it in a tungsten-pterin complex.

On August 20, 2002 officials representing the U.S.-based Centers for Disease Control and Prevention announced that urine tests on leukemia patient families and control group families in the Fallon, Nevada area had shown elevated levels of the metal tungsten in the bodies of both groups. 16 recent cases of cancer in children were discovered in the Fallon area which has now been identified as a "Cancer Cluster." Dr. Carol H. Rubin, a branch chief at the CDC, said data demonstrating a link between tungsten and leukemia is not available at present.

Occurrence

Tungsten is found in the minerals wolframite (iron-manganese tungstate, FeWO4/MnWO4), scheelite (calcium tungstate, CaWO4), ferberite and huebnerite. Important deposits of these minerals are in Bolivia, California, China, Colorado, Portugal, Russia, and South Korea (with China producing about 75% of the world's supply). The metal is commercially produced by reducing tungsten oxide with hydrogen or carbon.

Compounds

The most common oxidation state of tungsten is +6, but it exhibits all oxidation states from +2 to +6. Tungsten typically combines with oxygen to form the yellow tungstic oxide, WO3, which dissolves in aqueous alkaline solutions to form tungstate ions, WO42−.

Aqueous polyoxoanions

Aqueous tungstate solutions are noted for the formation of polyoxoanions under neutral and acidic conditions. As tungstate is progressively treated with acid, it first yields the soluble, metastable "paratungstate A" anion, W7O246−, which over hours or days converts to the less soluble "paratungstate B" anion, H2W12O4210−. Further acidification produces the very soluble metatungstate anion, H2W12O406−, after equilibrium is reached. The metatungstate ion exists as a symmetric cluster of twelve tungsten-oxygen octahedra known as the "Keggin" anion. Many other polyoxoanions exist as metastable species. The inclusion of a different atom such as phosphorus in place of the two central hydrogens in metatungstate produces a wide variety of the so-called heteropolyanions.

Isotopes

Naturally occurring tungsten consists of five isotopes whose half-lives are so long that they can be considered stable. All can decay into isotopes of element 72 (hafnium) by alpha emission. Alpha decay has only been observed, in 2003, in the lightest and rarest of them, 180W. On average, two alpha decays of 180W occur in one gram of natural tungsten per year.

27 artificial radioisotopes of tungsten have been characterized, the most stable of which are 181W with a half-life of 121.2 days, 185W with a half-life of 75.1 days, 188W with a half-life of 69.4 days and 178W with a half-life of 21.6 days. All of the remaining radioactive isotopes have half-lives of less than 24 hours, and most of these have half-lives that are less than 8 minutes. Tungsten also has 4 meta states, the most stable being 179mW (t½ 6.4 minutes).

References
ISBN links support NWE through referral fees

External links

Commons
Wikimedia Commons has media related to::


ar:تنجستن ca:Tungstè cs:Wolfram da:Wolfram de:Wolfram et:Volfram es:Wolframio eo:Volframo fr:Tungstène is:Volfram it:Tungsteno he:טונגסטן ku:Tûngsten lt:Volframas lv:Volframs hu:Volfrám nl:Wolfraam ja:タングステン no:Wolfram nn:Wolfram pl:Wolfram (pierwiastek) pt:Tungstênio ru:Вольфрам sl:Volfram sr:Волфрам fi:Volframi sv:Volfram th:ทังสเตน uk:Вольфрам zh:钨

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.