Difference between revisions of "Environmental engineering" - New World Encyclopedia

From New World Encyclopedia
(added credit and category tags, deleted foreign language links)
Line 1: Line 1:
Environmental engineering combines science and engineering principles to address ways in which to improve the quality of air, land, and water for living organisms. Chemical, biological, and geological sciences are incorporated into the techniques of mechanical, civil, and chemical engineering to address issues of public health and policy. Remediation of polluted sites, sanitary engineering, waste reduction and prevention are keys areas of concern.
+
'''Environmental engineering''' is the application of [[science]] and [[engineering]] principles to protect and enhance the quality of our [[natural environment|environment]]—air, water, and land resources—to sustain the health of humans and other living organisms. It combines conservation measures, pollution remediation, and waste reduction with public education and government policy.
  
------
+
* In the U.S., minimum education requirements for environmental engineers typically include a Bachelor's Degree in environmental (or civil) engineering from an accredited college.
'''Environmental engineering''' is the application of [[science]] and [[engineering]] principles to improve the [[natural environment|environment]] (air, water, and/or land resources), to provide healthful water, air, and land for human habitation and for other organisms, and to [[remediate]] [[pollution|polluted]] sites.  Negative environmental effects can be decreased and controlled through [[public education]], [[conservation ethic|conservation]], regulations, and the application of good engineering practices.  In the U.S., minimum education requirements for environmental engineers typically include a Bachelor's Degree in environmental (or civil) engineering from an accredited college.
+
 
 +
* Environmental engineering emphasizes several areas: process engineering, environmental chemistry, water and [[sewage treatment|wastewater treatment]] (sanitary engineering), waste reduction/management, and pollution prevention/cleanup.
 +
 
 +
* Some consider 'Environmental Engineering' to include the development of sustainable processes.
  
 
==Development of environmental engineering==
 
==Development of environmental engineering==
  
Ever since people first recognized that their health and well-being were related to the quality of their environment, they have applied thoughtful principles to attempt to improve the quality of their environment.  The Romans constructed [[aqueduct]]s to prevent drought and to create a clean, healthful water supply for the [[Metropolitan area|metropolis]] of [[Rome]]. In the 15th century, [[Bavaria]] created laws restricting the development and degradation of alpine country that constituted the region's water supply.
+
Ever since people first recognized that their health and well-being are related to the quality of their environment, they have applied thoughtful principles to attempt to improve environmental quality. For instance, the engineers of ancient Rome constructed [[aqueduct]]s to combat drought and create a healthful water supply for the Roman [[Metropolitan area|metropolis]]*. In the fifteenth century, [[Bavaria]]* created laws restricting the development and degradation of alpine country that constituted the region's water supply.
 +
 
 +
Modern environmental engineering began in the nineteenth century, when cities such as London and Paris instituted laws decreeing the construction of [[sewer]]* systems for the proper collection and disposal of sewage, and facilities to treat drinking water. Consequently, waterborne diseases such as [[cholera]]*, which were leading causes of death, dropped in incidence and became rarities.
 +
 
 +
[[Conservation]]* measures to protect the environment were also pursued. For example, in the early twentieth century, the national park system was created in the [[United States]].
 +
 
 +
With the growth of societies, many actions intended to benefit those societies had longer-term impacts that reduced the quality of the environment. One example is the widespread application of [[DDT]]* to control agricultural pests in the years following [[World War II]]. The [[agriculture|agricultural]] benefits of using DDT were outstanding, as crop yields increased dramatically and world hunger was substantially reduced. In addition, [[malaria]]* was controlled better than it had ever been. On the other hand, various species were brought to the verge of extinction due to the impact of DDT on their reproductive cycles—a story told vividly in [[Rachel Carson]]*'s ''Silent Spring''. Consequently, the modern environmental movement began, and the field of environmental engineering was pursued with renewed vigor.
  
Modern environmental engineering began in [[London]] in the mid-19th century when it was realized that proper [[sewage collection and disposal|sewerage]] could reduce the incidence of waterborne diseases such as [[cholera]].  The introduction of drinking water treatment and sewage treatment in industrialized countries reduced waterborne diseases from leading causes of death to rarities.
+
==Scope of environmental engineering==
  
In many cases, as societies grew, actions that were intended to achieve benefits for those societies had longer-term impacts which reduced other environmental qualities.  One example is the widespread application of [[DDT]] to control agricultural pests in the years following [[World War II]].  While the [[agriculture|agricultural]] benefits were outstanding and crop yields increased dramatically, thus reducing world hunger substantially, and [[malaria]] was controlled better than it ever had been, numerous species were brought to the verge of extinction due to the impact of the DDT on their reproductive cycles.  The story of DDT as vividly told in [[Rachel Carson]]'s "[[Silent Spring]]" is considered to be the birth of the modern environmental movement and the development of the modern field of "environmental engineering."
+
Environmental engineering undertakes to prevent and clean up all kinds of pollutants—chemical, biological, thermal, radioactive, and even mechanical. To meet its goals, environmental engineering incorporates elements from various disciplines, including [[chemistry]], [[biology]], [[ecology]], [[geology]], [[civil engineering]], [[chemical engineering]], [[mechanical engineering]], and [[public health]].
  
[[Conservation movement]]s and [[law]]s restricting public actions that would harm the environment have been developed by various societies for millennia.  Notable examples are the laws decreeing the construction of [[sewer]]s in [[London]] and [[Paris]] in the 19th century and the creation of the U.S. national park system in the early 20th century.
+
There are several divisions in the field of environmental engineering.
  
Briefly speaking, the main task of environmental engineering is to protect (from further degradation), preserve (the present condition), and enhance (the environment).
+
===Environmental impact assessment and mitigation===
  
==Scope of environmental engineering==
+
This division is a decision-making tool. Engineers and scientists assess the impacts of a proposed project on environmental conditions. They apply scientific and engineering principles to evaluate the project's impacts on:
"Pollutants" may be chemical, biological, thermal, radioactive, or even mechanical. Environmental engineering emphasizes several areas: process engineering, environmental chemistry, water and [[sewage treatment|wastewater treatment]] (sanitary engineering), waste reduction/management, and pollution prevention/cleanup.  Environmental engineering is a synthesis of various disciplines, incorporating elements from the following:
+
* the quality of air, water, [[habitat (ecology)|habitat]]*;
*[[Civil engineering]]
+
* [[flora (plants)|flora]] and [[fauna (animals)|fauna]];
*[[Chemical engineering]]
+
* agricultural capacity;
*[[Public health]]
+
* [[traffic]]; and
*[[Mechanical engineering]]
+
* social needs and customs.
*[[Chemistry]]
+
They also consider such factors as noise levels and visual (landscape) impacts.
*[[Biology]]
 
*[[Geology]]
 
*[[Ecology]]
 
  
Environmental engineering is the application of science and engineering principles to the environment. Some consider 'Environmental Engineering' to include the development of sustainable processes.  There are several divisions of the field of environmental engineering.  
+
If adverse impacts are expected, they then develop measures to limit or prevent such impacts. For example, to mitigate the filling-in of a section of wetlands during a proposed road development, they may plan for the creation of wetlands in a nearby location.
  
===Environmental impact assessment and mitigation===  
+
===Water supply and treatment===
It is a decision making tool.  In this division, engineers and scientists assess the impacts of a proposed project on environmental conditions. They apply scientific and engineering principles to evaluate if there are likely to be any adverse impacts to water quality, air quality, [[habitat (ecology)|habitat]] quality, [[flora (plants)|flora]] and [[fauna (animals)|fauna]], agricultural capacity, [[traffic]] impacts, social impacts, ecological impacts, noise impacts, visual(landscape) impacts, etc. If impacts are expected, they then develop mitigation measures to limit or prevent such impacts. An example of a mitigation measure would be the creation of wetlands in a nearby location to mitigate the filling in of wetlands necessary for a road development if it is not possible to reroute the road.
 
  
===Water supply and treatment===
 
 
Engineers and scientists work to secure water supplies for potable and agricultural use. They evaluate the water balance within a [[drainage basin|watershed]] and determine the available water supply, the water needed for various needs in that watershed, the seasonal cycles of water movement through the watershed and they develop systems to store, treat, and convey water for various uses. Water is treated to achieve water quality objectives for the end uses. In the case of potable water supply, water is treated to minimize risk of [[infectious disease]] transmittal, risk of non-infectious illness, and create a palatable water flavor. Water distribution systems are designed and built to provide adequate water pressure and flow rates to meet various end-user needs such as domestic use, fire suppression, and [[irrigation]].
 
Engineers and scientists work to secure water supplies for potable and agricultural use. They evaluate the water balance within a [[drainage basin|watershed]] and determine the available water supply, the water needed for various needs in that watershed, the seasonal cycles of water movement through the watershed and they develop systems to store, treat, and convey water for various uses. Water is treated to achieve water quality objectives for the end uses. In the case of potable water supply, water is treated to minimize risk of [[infectious disease]] transmittal, risk of non-infectious illness, and create a palatable water flavor. Water distribution systems are designed and built to provide adequate water pressure and flow rates to meet various end-user needs such as domestic use, fire suppression, and [[irrigation]].
  
Line 38: Line 42:
  
 
===Wastewater conveyance and treatment===
 
===Wastewater conveyance and treatment===
 +
 
Most urban and many rural areas no longer discharge human waste directly to the land through [[outhouse]], [[septic tank|septic]], and/or [[honey bucket]] systems, but rather deposit such waste into water and convey it from households via [[sewer]] systems. Engineers and scientists develop collection and treatment systems to carry this waste material away from where people live and produce the waste and discharge it into the environment. In [[developed countries]], substantial resources are applied to the treatment and [[detoxification]] of this waste before it is discharged into a river, lake, or ocean system. Developing nations are striving to obtain the resources to develop such systems so that they can improve water quality in their surface waters and reduce the risk of water-borne infectious disease.  
 
Most urban and many rural areas no longer discharge human waste directly to the land through [[outhouse]], [[septic tank|septic]], and/or [[honey bucket]] systems, but rather deposit such waste into water and convey it from households via [[sewer]] systems. Engineers and scientists develop collection and treatment systems to carry this waste material away from where people live and produce the waste and discharge it into the environment. In [[developed countries]], substantial resources are applied to the treatment and [[detoxification]] of this waste before it is discharged into a river, lake, or ocean system. Developing nations are striving to obtain the resources to develop such systems so that they can improve water quality in their surface waters and reduce the risk of water-borne infectious disease.  
  
Line 45: Line 50:
  
 
===Air quality management===
 
===Air quality management===
 +
 
Engineers apply scientific and engineering principles to the design of manufacturing and combustion processes to reduce air emissions to acceptable levels.  Scrubbers, precipitators, after-burners, and other devices are utilized to remove particulates, [[nitrogen oxide]]s, [[sulfur]] oxides, and reactive organic gases from vapors prior to allowing their emission to the atmosphere. This field is beginning to overlap with [[energy efficiency]] and the desire to reduce [[carbon dioxide]] and other [[greenhouse gas]] emissions from [[combustion]] processes. Scientists develop [[Atmospheric dispersion modeling|dispersion models]] to evaluate the concentration of a pollutant at a receptor source or the impact on overall air quality and smog production from vehicle and flue gas stack emissions.
 
Engineers apply scientific and engineering principles to the design of manufacturing and combustion processes to reduce air emissions to acceptable levels.  Scrubbers, precipitators, after-burners, and other devices are utilized to remove particulates, [[nitrogen oxide]]s, [[sulfur]] oxides, and reactive organic gases from vapors prior to allowing their emission to the atmosphere. This field is beginning to overlap with [[energy efficiency]] and the desire to reduce [[carbon dioxide]] and other [[greenhouse gas]] emissions from [[combustion]] processes. Scientists develop [[Atmospheric dispersion modeling|dispersion models]] to evaluate the concentration of a pollutant at a receptor source or the impact on overall air quality and smog production from vehicle and flue gas stack emissions.
  
 
See: [[Remediation]]
 
See: [[Remediation]]
  
===Other applications===
+
===Additional applications===
 +
 
 
* [[Brownfield|Contaminated land]] [[management]] and site [[remediation]]
 
* [[Brownfield|Contaminated land]] [[management]] and site [[remediation]]
 
* [[Risk assessment]]
 
* [[Risk assessment]]

Revision as of 17:24, 20 September 2006

Environmental engineering is the application of science and engineering principles to protect and enhance the quality of our environment—air, water, and land resources—to sustain the health of humans and other living organisms. It combines conservation measures, pollution remediation, and waste reduction with public education and government policy.

  • In the U.S., minimum education requirements for environmental engineers typically include a Bachelor's Degree in environmental (or civil) engineering from an accredited college.
  • Environmental engineering emphasizes several areas: process engineering, environmental chemistry, water and wastewater treatment (sanitary engineering), waste reduction/management, and pollution prevention/cleanup.
  • Some consider 'Environmental Engineering' to include the development of sustainable processes.

Development of environmental engineering

Ever since people first recognized that their health and well-being are related to the quality of their environment, they have applied thoughtful principles to attempt to improve environmental quality. For instance, the engineers of ancient Rome constructed aqueducts to combat drought and create a healthful water supply for the Roman metropolis. In the fifteenth century, Bavaria created laws restricting the development and degradation of alpine country that constituted the region's water supply.

Modern environmental engineering began in the nineteenth century, when cities such as London and Paris instituted laws decreeing the construction of sewer systems for the proper collection and disposal of sewage, and facilities to treat drinking water. Consequently, waterborne diseases such as cholera, which were leading causes of death, dropped in incidence and became rarities.

Conservation measures to protect the environment were also pursued. For example, in the early twentieth century, the national park system was created in the United States.

With the growth of societies, many actions intended to benefit those societies had longer-term impacts that reduced the quality of the environment. One example is the widespread application of DDT to control agricultural pests in the years following World War II. The agricultural benefits of using DDT were outstanding, as crop yields increased dramatically and world hunger was substantially reduced. In addition, malaria was controlled better than it had ever been. On the other hand, various species were brought to the verge of extinction due to the impact of DDT on their reproductive cycles—a story told vividly in Rachel Carson's Silent Spring. Consequently, the modern environmental movement began, and the field of environmental engineering was pursued with renewed vigor.

Scope of environmental engineering

Environmental engineering undertakes to prevent and clean up all kinds of pollutants—chemical, biological, thermal, radioactive, and even mechanical. To meet its goals, environmental engineering incorporates elements from various disciplines, including chemistry, biology, ecology, geology, civil engineering, chemical engineering, mechanical engineering, and public health.

There are several divisions in the field of environmental engineering.

Environmental impact assessment and mitigation

This division is a decision-making tool. Engineers and scientists assess the impacts of a proposed project on environmental conditions. They apply scientific and engineering principles to evaluate the project's impacts on:

  • the quality of air, water, habitat;
  • flora and fauna;
  • agricultural capacity;
  • traffic; and
  • social needs and customs.

They also consider such factors as noise levels and visual (landscape) impacts.

If adverse impacts are expected, they then develop measures to limit or prevent such impacts. For example, to mitigate the filling-in of a section of wetlands during a proposed road development, they may plan for the creation of wetlands in a nearby location.

Water supply and treatment

Engineers and scientists work to secure water supplies for potable and agricultural use. They evaluate the water balance within a watershed and determine the available water supply, the water needed for various needs in that watershed, the seasonal cycles of water movement through the watershed and they develop systems to store, treat, and convey water for various uses. Water is treated to achieve water quality objectives for the end uses. In the case of potable water supply, water is treated to minimize risk of infectious disease transmittal, risk of non-infectious illness, and create a palatable water flavor. Water distribution systems are designed and built to provide adequate water pressure and flow rates to meet various end-user needs such as domestic use, fire suppression, and irrigation.

See: hydrology, and water resources.

Wastewater conveyance and treatment

Most urban and many rural areas no longer discharge human waste directly to the land through outhouse, septic, and/or honey bucket systems, but rather deposit such waste into water and convey it from households via sewer systems. Engineers and scientists develop collection and treatment systems to carry this waste material away from where people live and produce the waste and discharge it into the environment. In developed countries, substantial resources are applied to the treatment and detoxification of this waste before it is discharged into a river, lake, or ocean system. Developing nations are striving to obtain the resources to develop such systems so that they can improve water quality in their surface waters and reduce the risk of water-borne infectious disease.

There are numerous wastewater treatment technologies. A wastewater treatment train can consist of a primary clarifier system to remove solid and floating materials, a secondary treatment system consisting of an aeration basin followed by flocculation and sedimentation or an activated sludge system and a secondary clarifier, a tertiary biological nitrogen removal system, and a final disinfection process. The aeration basin/activated sludge system removes organic material by growing bacteria (activated sludge). The secondary clarifier removes the activated sludge from the water. The tertiary system, although not always included due to costs, is becoming more prevalent to remove nitrogen and phosphorus and to disinfect the water before discharge to a surface water stream or ocean outfall.

See: Remediation

Air quality management

Engineers apply scientific and engineering principles to the design of manufacturing and combustion processes to reduce air emissions to acceptable levels. Scrubbers, precipitators, after-burners, and other devices are utilized to remove particulates, nitrogen oxides, sulfur oxides, and reactive organic gases from vapors prior to allowing their emission to the atmosphere. This field is beginning to overlap with energy efficiency and the desire to reduce carbon dioxide and other greenhouse gas emissions from combustion processes. Scientists develop dispersion models to evaluate the concentration of a pollutant at a receptor source or the impact on overall air quality and smog production from vehicle and flue gas stack emissions.

See: Remediation

Additional applications

  • Contaminated land management and site remediation
  • Risk assessment
  • Environmental policy and regulation development
  • Solid waste management
  • Hazardous waste management
  • Environmental health and safety
  • Natural resource management
  • Noise pollution
  • Geographic information system (GIS)

See also

  • Biofiltration
  • Engineering geology
  • Hydrogeology
  • Environmental restoration
  • Hydraulic engineering
  • Remediation
  • Water purification
  • Environmental management
  • Atmospheric dispersion modeling
  • Category:Air dispersion modeling
  • Water quality modelling

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.