|
||||||||||||||||||||||||||||
General | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name, Symbol, Number | praseodymium, Pr, 59 | |||||||||||||||||||||||||||
Chemical series | lanthanides | |||||||||||||||||||||||||||
Group, Period, Block | n/a, 6, f | |||||||||||||||||||||||||||
Appearance | grayish white![]() |
|||||||||||||||||||||||||||
Atomic mass | 140.90765(2) g/mol | |||||||||||||||||||||||||||
Electron configuration | [Xe] 4f3 6s2 | |||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 21, 8, 2 | |||||||||||||||||||||||||||
Physical properties | ||||||||||||||||||||||||||||
Phase | solid | |||||||||||||||||||||||||||
Density (near r.t.) | 6.77 g/cm³ | |||||||||||||||||||||||||||
Liquid density at m.p. | 6.50 g/cm³ | |||||||||||||||||||||||||||
Melting point | 1208 K (935 °C, 1715 °F) |
|||||||||||||||||||||||||||
Boiling point | 3793 K (3520 °C, 6368 °F) |
|||||||||||||||||||||||||||
Heat of fusion | 6.89 kJ/mol | |||||||||||||||||||||||||||
Heat of vaporization | 331 kJ/mol | |||||||||||||||||||||||||||
Heat capacity | (25 °C) 27.20 J/(mol·K) | |||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||
Atomic properties | ||||||||||||||||||||||||||||
Crystal structure | hexagonal | |||||||||||||||||||||||||||
Oxidation states | 3 (mildly basic oxide) |
|||||||||||||||||||||||||||
Electronegativity | 1.13 (Pauling scale) | |||||||||||||||||||||||||||
Ionization energies (more) |
1st: 527 kJ/mol | |||||||||||||||||||||||||||
2nd: 1020 kJ/mol | ||||||||||||||||||||||||||||
3rd: 2086 kJ/mol | ||||||||||||||||||||||||||||
Atomic radius | 185 pm | |||||||||||||||||||||||||||
Atomic radius (calc.) | 247 pm | |||||||||||||||||||||||||||
Miscellaneous | ||||||||||||||||||||||||||||
Magnetic ordering | no data | |||||||||||||||||||||||||||
Electrical resistivity | (r.t.) (α, poly) 0.700 µΩ·m |
|||||||||||||||||||||||||||
Thermal conductivity | (300 K) 12.5 W/(m·K) | |||||||||||||||||||||||||||
Thermal expansion | (r.t.) (α, poly) 6.7 µm/(m·K) |
|||||||||||||||||||||||||||
Speed of sound (thin rod) | (20 °C) 2280 m/s | |||||||||||||||||||||||||||
Speed of sound (thin rod) | (r.t.) (α form) 37.3 m/s | |||||||||||||||||||||||||||
Shear modulus | (α form) 14.8 GPa | |||||||||||||||||||||||||||
Bulk modulus | (α form) 28.8 GPa | |||||||||||||||||||||||||||
Poisson ratio | (α form) 0.281 | |||||||||||||||||||||||||||
Vickers hardness | 400 MPa | |||||||||||||||||||||||||||
Brinell hardness | 481 MPa | |||||||||||||||||||||||||||
CAS registry number | 7440-10-0 | |||||||||||||||||||||||||||
Notable isotopes | ||||||||||||||||||||||||||||
|
Praseodymium[1] (chemical symbol Pr, atomic number 59) is a soft silvery metallic element that is a member of the lanthanide series of chemical elements. It is considered one of the "rare earth metals."[2]
Contents |
Praseodymium and its alloys and compounds are useful in a variety of ways. For instance, praseodymium forms the core of carbon arc lights that are used by the motion picture industry for studio lighting. An alloy of praseodymium with magnesium is useful for making high-strength metals for aircraft engines, and an alloy of praseodymium with nickel has been used by scientists to attain a temperature within one thousandth of a degree of absolute zero. A mixture of praseodymium with neodymium is used to make specialty goggles for welders and glass blowers. In addition, some praseodymium compounds are used to impart a yellow color to glasses and enamels.
Praseodymium is available in small quantities in the Earth’s crust—about 9.5 parts per million (ppm). It is found in the rare earth minerals monazite and bastnasite, and it can be recovered from these minerals by an ion exchange process. Praseodymium also makes up about five percent of Mischmetal, an alloy of rare earth elements in a range of naturally occurring proportions.
The name praseodymium comes from a combination of two Greek words: prasios, meaning "green" and didymos, or "twin."
In 1841, Carl Mosander extracted a rare earth material called "didymium" (meaning "twin element") from lanthana. It was so named because of its remarkable similarity to lanthanum, with which it was found. Mosander wrongly believed didymium to be an element, under the impression that "ceria" (or cerite) isolated by Jöns Jakob Berzelius in 1803 was a mixture of cerium, lanthanum, and didymium. He was right about lanthanum being an element, but not about didymium.
In 1874, Per Teodor Cleve concluded that didymium was composed of two elements. Separately, in 1879, Lecoq de Boisbaudran isolated a new earth, samarium, from didymium obtained from the mineral samarskite. Eventually, in 1885, Austrian chemist Baron Carl Auer von Welsbach separated didymium into two elements that gave salts of different colors. These two elements were praseodymium and neodymium.
Praseodymium is an inner transition metal (or lanthanide) that lies in period 6 of the periodic table, between cerium and neodymium. This element is somewhat more resistant to corrosion in air than europium, lanthanum, cerium, or neodymium. Nonetheless, when exposed to air, it develops a green oxide coating that spalls off, exposing more metal to oxidation. For this reason, praseodymium should be stored under a light mineral oil or sealed in glass.
Naturally occurring praseodymium is composed of one stable isotope, 141Pr. In addition, many radioisotopes have been characterized. Of these, the longest-lived radioisotopes are 143Pr, with a half-life of 13.57 days, and 142Pr, with a half-life of 19.12 hours. All the remaining radioactive isotopes have half-lives that are less than 5.985 hours, and most of them have half-lives that are less than 33 seconds. This element also has six meta states.
The isotopes of praseodymium range in atomic weight from 120.955 atomic mass units (u) (121Pr) to 158.955 u (159Pr). The primary decay mode before the stable isotope, 141Pr, is electron capture and the primary mode after is beta minus decay. The primary decay products before 141Pr are element 58 (cerium) isotopes and the primary products after are element 60 (neodymium) isotopes.
Praseodymium and its alloys and compounds can be used for various purposes, as follows.
Like all rare earths, praseodymium is of low-to-moderate toxicity. Praseodymium has no known biological role.
All links retrieved June 13, 2019.
New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:
The history of this article since it was imported to New World Encyclopedia:
Note: Some restrictions may apply to use of individual images which are separately licensed.