Difference between revisions of "Mechanics" - New World Encyclopedia

From New World Encyclopedia
 
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{{Images OK}}{{Approved}}{{Copyedited}}
 +
[[Image:Newtons laws in latin.jpg|thumb|right|200px|Newton's first and second laws of motion, in Latin, from the original 1687 edition of ''[[Philosophiæ Naturalis Principia Mathematica|Principia Mathematica]].'']]
 +
 +
'''Mechanics''' (from the [[Greek language|Greek]] term ''{{Polytonic|Μηχανική}}'') is a branch of [[physics]] involving study of the movement of [[physical body|physical bodies]] when subjected to [[force]]s or [[Displacement (vector)|displacements]], and the subsequent effects of the bodies on their environment. This discipline, which has its roots in several ancient civilizations, is now subdivided into two main branches: [[classical mechanics]] and [[quantum mechanics]].
 +
 +
During the [[early modern period]], scientists such as [[Galileo]], [[Johannes Kepler]], and especially [[Isaac Newton]], laid the foundations for what is now known as classical mechanics. The foundations of quantum mechanics were established during the first half of the twentieth century by [[Max Planck]], [[Werner Heisenberg]], [[Louis de Broglie]], [[Albert Einstein]], [[Niels Bohr]], [[Erwin Schrödinger]], [[Max Born]], [[von Neumann|John von Neumann]], [[Paul Dirac]], [[Wolfgang Pauli]] and others. Quantum mechanics is now considered a foundational-level theory that encompasses and supersedes classical mechanics. However, classical mechanics is useful for calculations of macroscopic processes, while quantum mechanics helps explain and predict processes at the molecular, atomic, and subatomic levels.
 +
{{toc}}
 +
Studies in mechanics have made vital contributions to various fields of engineering. They include [[mechanical engineering]], [[aerospace engineering]], [[civil engineering]], [[structural engineering]], [[materials engineering]], and [[biomedical engineering]]. Thus, knowledge of mechanics has led to many practical applications.
 
{{Classical mechanics|cTopic=Branches}}
 
{{Classical mechanics|cTopic=Branches}}
 
{{Quantum mechanics}}
 
{{Quantum mechanics}}
 +
== Significance ==
 +
Mechanics is the original discipline of physics and was formerly part of "natural philosophy," dealing with forces and motion in the [[macroscopic]] world as perceived by the human eye. This discipline has developed into a huge body of knowledge about important aspects of the natural world. Modern mechanics encompasses the movement of all matter in the universe under the four [[fundamental interaction]]s (or forces): [[gravity]], the [[strong interaction|strong]] and [[weak interaction]]s, and the [[electromagnetic interaction]].
  
'''Mechanics''' ([[Greek language|Greek]] ''{{Polytonic|Μηχανική}}'') is a branch of [[physics]] involving study of the movement of [[physical body|physical bodies]] when subjected to [[force]]s or [[Displacement (vector)|displacements]], and the subsequent effects of the bodies on their environment. The discipline has its roots in several ancient civilizations. During the [[early modern period]], scientists such as [[Galileo]], [[Johannes Kepler]], and especially [[Isaac Newton]], laid the foundations for what is now known as [[classical mechanics]].
+
Mechanics also constitutes a central part of [[technology]], the application of physical knowledge for human purposes. In this sense, the discipline is often known as engineering or [[applied mechanics]], and it is used to design and analyze the behavior of [[structure]]s, [[mechanism]]s, and [[machine]]s. Important aspects of the fields of [[mechanical engineering]], [[aerospace engineering]], [[civil engineering]], [[structural engineering]], [[materials engineering]], [[biomedical engineering]] and [[biomechanics]] were spawned from the study of mechanics.
 
 
 
 
== Significance ==
 
Mechanics is the original discipline of physics and was formerly known as natural philosophy, dealing with forces and motion in the [[macroscopic]] world as the human eye perceives it. It has developed into a huge body of knowledge about important aspects of the natural world.  Modern mechanics encompasses the movement of all matter in the universe under the four [[fundamental interaction]]s (or forces): [[gravity]], the [[strong interaction|strong]] and [[weak interaction]]s, and the [[electromagnetic interaction]].
 
  
Mechanics also constitutes a central part of [[technology]], the application of physical knowledge for humanly defined purposes. In this connection, the discipline is often known as engineering or [[applied mechanics]].  In this sense, mechanics is used to design and analyze the behavior of [[structure]]s, [[mechanism]]s, and [[machine]]s.  Important aspects of the fields of [[mechanical engineering]], [[aerospace engineering]], [[civil engineering]], [[structural engineering]], [[materials engineering]], [[biomedical engineering]] and [[biomechanics]] were spawned from the study of mechanics.
+
== Classical versus quantum mechanics ==
  
== Classical versus quantum ==
+
The major division of the discipline of mechanics is one that separates [[classical mechanics]] from [[quantum mechanics]]. Historically, classical mechanics came first, while quantum mechanics is a comparatively recent formulation. Classical mechanics originated with [[Isaac Newton]]'s [[Laws of motion]] in ''[[Principia Mathematica]],'' while quantum mechanics did not appear until 1900. Both are commonly held to constitute the most certain knowledge that exists about physical nature. Classical mechanics has especially often been viewed as a model for other so-called [[exact science]]s. Essential in this respect is the relentless use of [[mathematics]] in theories, as well as the decisive role played by [[experiment]] in generating and testing them.
  
The major division of the mechanics discipline separates [[classical mechanics]] from [[quantum mechanics]]. Historically, classical mechanics came first, while quantum mechanics is a comparatively recent invention. Classical mechanics originated with [[Isaac Newton]]'s [[Laws of motion]] in [[Principia Mathematica]], while quantum mechanics did not appear until 1900. Both are commonly held to constitute the most certain knowledge that exists about physical nature. Classical mechanics has especially often been viewed as a model for other so-called [[exact science]]s. Essential in this respect is the relentless use of [[mathematics]] in theories, as well as the decisive role played by [[experiment]] in generating and testing them.
+
[[Quantum mechanics]] is of a wider scope, as it encompasses classical mechanics as a sub-discipline that is applicable under certain restricted circumstances. According to the [[correspondence principle]], there is no contradiction or conflict between the two subjects, each simply pertains to specific situations. Quantum mechanics has superseded classical mechanics at the foundational level and is indispensable for the explanation and prediction of processes at molecular, atomic, and subatomic levels. However, for macroscopic processes, classical mechanics is able to solve problems that are unmanageably difficult in quantum mechanics and hence remains useful and well used.
  
[[Quantum]] mechanics is of a wider scope, as it encompasses classical mechanics as a sub-discipline which applies under certain restricted circumstances. According to the [[correspondence principle]], there is no contradiction or conflict between the two subjects, each simply pertains to specific situations. Quantum mechanics has superseded classical mechanics at the foundational level and is indispensable for the explanation and prediction of processes at molecular, atomic, and subatomic levels. However, for macroscopic processes, classical mechanics is able to solve problems that are unmanageably difficult in quantum mechanics and hence remains useful and well used.
+
== Einsteinian versus Newtonian physics ==
 +
Analogous to the quantum reformation of classical mechanics, [[Einstein]]'s [[General relativity|general]] and [[Special relativity|special]] theories of [[theory of relativity|relativity]] have expanded the scope of mechanics beyond the mechanics of [[Newton]] and [[Galileo]], and made fundamental corrections to them, that become significant and even dominant as speeds of material objects approach the [[speed of light]], which cannot be exceeded.
  
== Einsteinian versus Newtonian ==
+
Relativistic corrections are also needed for quantum mechanics, although relativity has not been fully integrated with it yet. This is one of the hurdles that has to be overcome in developing a [[Grand Unified Theory]].
Analogous to the quantum versus classical reformation, [[Einstein]]'s [[General relativity|general]] and [[Special relativity|special]] theories of [[theory of relativity|relativity]] have expanded the scope of mechanics beyond the mechanics of [[Newton]] and [[Galileo]], and made fundamental corrections to them, that become significant and even dominant as speeds of material objects approach the [[speed of light]], which cannot be exceeded. Relativistic corrections are also needed for quantum mechanics, although relativity has not been fully integrated with it yet; this is one of the hurdles that has to be overcome in developing a [[Grand Unified Theory]].
 
  
 
==Types of mechanical bodies==
 
==Types of mechanical bodies==
Thus the often-used term '''[[Physical body|body]]''' needs to stand for a wide assortment of objects, including particles, [[projectiles]], [[spacecraft]], [[stars]], parts of [[mechanical engineering|machinery]], parts of [[solids]], parts of [[fluids]] ([[gases]] and [[liquids]]), etc.
+
The often-used term '''[[Physical body|body]]''' needs to stand for a wide assortment of objects, including particles, [[projectiles]], [[spacecraft]], [[stars]], parts of [[mechanical engineering|machinery]], parts of [[solids]], parts of [[fluids]] ([[gases]] and [[liquids]]), and so forth.
  
Other distinctions between the various sub-disciplines of mechanics, concern the nature of the bodies being described. Particles are bodies with little (known) internal structure, treated as mathematical points in classical mechanics. Rigid bodies have size and shape, but retain a simplicity close to that of the particle, adding just a few so-called [[degrees of freedom (physics and chemistry)|degrees of freedom]], such as orientation in space.
+
Other distinctions between the various sub-disciplines of mechanics, concern the nature of the bodies being described. Particles are bodies with little-known internal structure, treated as mathematical points in classical mechanics. Rigid bodies have size and shape, but retain a simplicity close to that of the particle, adding just a few so-called [[degrees of freedom (physics and chemistry)|degrees of freedom]], such as orientation in space.
  
 
Otherwise, bodies may be semi-rigid, that is, [[Elasticity (physics)|elastic]], or non-rigid, that is, [[fluid]]. These subjects have both classical and quantum divisions of study.
 
Otherwise, bodies may be semi-rigid, that is, [[Elasticity (physics)|elastic]], or non-rigid, that is, [[fluid]]. These subjects have both classical and quantum divisions of study.
  
For instance: The motion of a spacecraft, regarding its [[orbit]] and [[attitude]] ([[rotation]]), is described by the relativistic theory of classical mechanics. While analogous motions of an [[atomic nucleus]] are described by quantum mechanics.
+
For instance, the motion of a spacecraft, regarding its [[orbit]] and [[attitude]] ([[rotation]]), is described by the relativistic theory of classical mechanics. Analogous motions of an [[atomic nucleus]] are described by quantum mechanics.
 
 
== Sub-disciplines in mechanics ==
 
The following are two lists of various subjects that are studied in mechanics.
 
  
Note that there is also the "[[Field theory (physics)|theory of fields]]" which constitutes a separate discipline in physics, formally treated as distinct from mechanics, whether [[classical electromagnetism|classical fields]] or [[quantum field theory|quantum fields]]. But in actual practice, subjects belonging to mechanics and fields are closely interwoven. Thus, for instance, forces that act on particles are frequently derived from fields ([[electromagnetic]] or [[gravitational]]), and particles generate fields by acting as sources. In fact, in quantum mechanics, particles themselves are fields, as described theoretically by the [[wave function]].
+
== Sub-disciplines of mechanics ==
 +
The following two lists indicate various subjects that are studied under classical mechanics and quantum mechanics.
  
 
=== Classical mechanics ===
 
=== Classical mechanics ===
The following are described as forming Classical mechanics:
+
The following areas are included as part of the field of classical mechanics:
* [[Newtonian mechanics]], the original theory of motion ([[kinematics]]) and forces ([[Dynamics (mechanics)|dynamics]])
+
* [[Newtonian mechanics]], involves the original theory of motion ([[kinematics]]) and forces ([[Dynamics (mechanics)|dynamics]])
 
* [[Lagrangian mechanics]], a theoretical [[formalism]], based on the principle of conservation of energy
 
* [[Lagrangian mechanics]], a theoretical [[formalism]], based on the principle of conservation of energy
 
* [[Hamiltonian mechanics]], another theoretical formalism, based on the principle of the [[least action]]
 
* [[Hamiltonian mechanics]], another theoretical formalism, based on the principle of the [[least action]]
* [[Celestial mechanics]], the motion of heavenly bodies: planets, comets, stars, [[galaxies]], etc.
+
* [[Celestial mechanics]], the motion of heavenly bodies, such as planets, comets, stars, and [[galaxies]]
* [[Astrodynamics]], spacecraft [[navigation]], etc.
+
* [[Astrodynamics]], for the [[navigation]] of spacecraft and similar objects
* [[Solid mechanics]], [[Elasticity (physics)|elasticity]], the properties of (semi-)rigid bodies
+
* [[Solid mechanics]], involving study of [[Elasticity (physics)|elasticity]] and the properties of (semi-)rigid bodies
* [[Acoustics]], [[sound]] ( = density variation propagation) in solids, fluids and gases.
+
* [[Acoustics]], dealing with [[sound]] (or density variation propagation) in solids, fluids, and gases.
* [[Statics]], semi-rigid bodies in [[mechanical equilibrium]]
+
* [[Statics]], dealing with semi-rigid bodies in [[mechanical equilibrium]]
* [[Fluid mechanics]], the motion of fluids
+
* [[Fluid mechanics]], or the study of the motion of fluids
* [[Soil mechanics]], mechanical behavior of soils
+
* [[Soil mechanics]], or the study of the mechanical behavior of soils
* [[Continuum mechanics]], mechanics of continua (both solid and fluid)
+
* [[Continuum mechanics]], involving the mechanics of continua (both solid and fluid)
* [[Hydraulics]], mechanical properties of liquids
+
* [[Hydraulics]], dealing with the mechanical properties of liquids
* [[Fluid statics]], liquids in equilibrium
+
* [[Fluid statics]], dealing with liquids in equilibrium
* [[Applied mechanics|Applied / Engineering mechanics]]
+
* [[Applied mechanics|Applied / Engineering mechanics]], for technological applications
* [[Biomechanics]], solids, fluids, etc. in biology
+
* [[Biomechanics]], studying biological materials
* [[Biophysics]], physical processes in living organisms
+
* [[Biophysics]], studying the physical processes in living organisms
* [[Statistical mechanics]], assemblies of particles too large to be described in a deterministic way
+
* [[Statistical mechanics]], dealing with assemblies of particles too large to be described in a deterministic way
* Relativistic or [[Albert Einstein|Einsteinian]] mechanics, universal [[gravitation]]
+
* Relativistic or [[Albert Einstein|Einsteinian]] mechanics, dealing with universal [[gravitation]]
  
 
===Quantum mechanics===
 
===Quantum mechanics===
The following are categorized as being part of [[Quantum mechanics]]:
+
The following areas are categorized as being part of the field of [[quantum mechanics]]:
* [[Particle physics]], the motion, structure, and reactions of particles
 
* [[Nuclear physics]], the motion, structure, and reactions of nuclei
 
* [[Condensed matter physics]], quantum gases, solids, liquids, etc.
 
* [[Quantum statistical mechanics]], large assemblies of particles
 
  
== Professional organizations ==
+
* [[Particle physics]], related to the motion, structure, and reactions of particles
*[[Applied Mechanics Division]], [[American Society of Mechanical Engineers]]
+
* [[Nuclear physics]], related to the motion, structure, and reactions of atomic nuclei
*Fluid Dynamics Division, [[American Physical Society]]
+
* [[Condensed matter physics]], involving the study of quantum gases, solids, and liquids
*[http://www.imeche.org Institution of Mechanical Engineers] is the United Kingdom's qualifying body for Mechanical Engineers and has been the home of Mechanical Engineers for over 150 years.
+
* [[Quantum statistical mechanics]], dealing with large assemblies of particles
 +
 
 +
In addition to the above areas, there is the "[[Field theory (physics)|theory of fields]]," which constitutes a separate discipline in physics, formally treated as distinct from mechanics, whether [[classical electromagnetism|classical fields]] or [[quantum field theory|quantum fields]]. But in actual practice, subjects belonging to mechanics and fields are closely interwoven. Thus, for instance, forces that act on particles are frequently derived from fields ([[electromagnetic]] or [[gravitational]]), and particles generate fields by acting as sources. In fact, in quantum mechanics, particles themselves are fields, as described theoretically by the [[wave function]].
  
 
== See also ==
 
== See also ==
  
 
* [[Albert Einstein]]
 
* [[Albert Einstein]]
* [[Dynamics]]
 
 
* [[Engineering]]
 
* [[Engineering]]
 
* [[Galileo]]
 
* [[Galileo]]
Line 84: Line 85:
 
* Beer, Ferdinand Pierre, E. Russell Johnston, and John T. DeWolf. 2006. ''Mechanics of Materials.'' Boston: McGraw-Hill Higher Education. ISBN 978-0073107950.
 
* Beer, Ferdinand Pierre, E. Russell Johnston, and John T. DeWolf. 2006. ''Mechanics of Materials.'' Boston: McGraw-Hill Higher Education. ISBN 978-0073107950.
  
* Griffiths, David J. 2005. ''Introduction to Quantum Mechanics.'' 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall. ISBN 978-0131118928.
+
* Byron, Frederick W., and Robert W. Fuller. [1969] 1992. ''Mathematics of Classical and Quantum Physics.'' reprint ed., New York: Dover Publications. ISBN 048667164X.
 +
 
 +
* Griffiths, David J. 2005. ''Introduction to Quantum Mechanics,'' 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall. ISBN 978-0131118928.
  
 
* Hibbeler, R. C. 2007. ''Engineering Mechanics: Dynamics.'' Upper Saddle River, NJ: Pearson/Prentice Hall. ISBN 978-0132215046.
 
* Hibbeler, R. C. 2007. ''Engineering Mechanics: Dynamics.'' Upper Saddle River, NJ: Pearson/Prentice Hall. ISBN 978-0132215046.
  
* Hibbeler, R. C. 2008. ''Mechanics of Materials.'' 7th ed. Upper Saddle River, NJ: Prentice Hall. ISBN 978-0132209915.
+
* Hibbeler, R. C. 2008. ''Mechanics of Materials,'' 7th ed. Upper Saddle River, NJ: Prentice Hall. ISBN 978-0132209915.
 +
 
 +
* Messiah, Albert. [1958] 1999. ''Quantum Mechanics.'' reprint ed., Mineola, NY: Dover Publications. ISBN 0486409244.
  
 
* Munson, Bruce Roy, Donald F. Young, and T. H. Okiishi. 2006. ''Fundamentals of Fluid Mechanics.'' Hoboken, NJ: J. Wiley & Sons. ISBN 978-0471675822.
 
* Munson, Bruce Roy, Donald F. Young, and T. H. Okiishi. 2006. ''Fundamentals of Fluid Mechanics.'' Hoboken, NJ: J. Wiley & Sons. ISBN 978-0471675822.
Line 95: Line 100:
  
 
== External links ==
 
== External links ==
 
+
All links retrieved November 8, 2022.
* [http://iMechanica.org/ iMechanica: web of mechanics and mechanicians] Retrieved July 25, 2008.
+
* [http://iMechanica.org/ iMechanica: web of mechanics and mechanicians]  
 
+
* [http://www.asme.org/ American Society of Mechanical Engineers.]  
* [http://www.physclips.unsw.edu.au/ Physclips: Mechanics with animations and video clips] University of New South Wales. Retrieved July 25, 2008.
+
* [http://www.aps.org/ American Physical Society.]  
 
 
* [http://www7.nationalacademies.org/usnctam  U.S. National Committee on Theoretical and Applied Mechanics.] Retrieved July 25, 2008.
 
 
 
* [http://id.mind.net/~zona/mstm/physics/mechanics/mechanics.html The Physics Department - Mechanics.] Retrieved July 25, 2008.
 
 
 
* [http://www.mip.berkeley.edu/physics/bookadx.html Mechanics.] Retrieved July 25, 2008.
 
  
 
[[Category:Physical sciences]]
 
[[Category:Physical sciences]]

Latest revision as of 03:51, 9 November 2022

Newton's first and second laws of motion, in Latin, from the original 1687 edition of Principia Mathematica.

Mechanics (from the Greek term Μηχανική) is a branch of physics involving study of the movement of physical bodies when subjected to forces or displacements, and the subsequent effects of the bodies on their environment. This discipline, which has its roots in several ancient civilizations, is now subdivided into two main branches: classical mechanics and quantum mechanics.

During the early modern period, scientists such as Galileo, Johannes Kepler, and especially Isaac Newton, laid the foundations for what is now known as classical mechanics. The foundations of quantum mechanics were established during the first half of the twentieth century by Max Planck, Werner Heisenberg, Louis de Broglie, Albert Einstein, Niels Bohr, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli and others. Quantum mechanics is now considered a foundational-level theory that encompasses and supersedes classical mechanics. However, classical mechanics is useful for calculations of macroscopic processes, while quantum mechanics helps explain and predict processes at the molecular, atomic, and subatomic levels.

Studies in mechanics have made vital contributions to various fields of engineering. They include mechanical engineering, aerospace engineering, civil engineering, structural engineering, materials engineering, and biomedical engineering. Thus, knowledge of mechanics has led to many practical applications.


Classical mechanics
History · Timeline
Branches
Applied mechanics
Celestial mechanics
Continuum mechanics
Geometric optics
Statistical mechanics
Quantum mechanics
Uncertainty principle
Introduction to...

Mathematical formulation of...

Significance

Mechanics is the original discipline of physics and was formerly part of "natural philosophy," dealing with forces and motion in the macroscopic world as perceived by the human eye. This discipline has developed into a huge body of knowledge about important aspects of the natural world. Modern mechanics encompasses the movement of all matter in the universe under the four fundamental interactions (or forces): gravity, the strong and weak interactions, and the electromagnetic interaction.

Mechanics also constitutes a central part of technology, the application of physical knowledge for human purposes. In this sense, the discipline is often known as engineering or applied mechanics, and it is used to design and analyze the behavior of structures, mechanisms, and machines. Important aspects of the fields of mechanical engineering, aerospace engineering, civil engineering, structural engineering, materials engineering, biomedical engineering and biomechanics were spawned from the study of mechanics.

Classical versus quantum mechanics

The major division of the discipline of mechanics is one that separates classical mechanics from quantum mechanics. Historically, classical mechanics came first, while quantum mechanics is a comparatively recent formulation. Classical mechanics originated with Isaac Newton's Laws of motion in Principia Mathematica, while quantum mechanics did not appear until 1900. Both are commonly held to constitute the most certain knowledge that exists about physical nature. Classical mechanics has especially often been viewed as a model for other so-called exact sciences. Essential in this respect is the relentless use of mathematics in theories, as well as the decisive role played by experiment in generating and testing them.

Quantum mechanics is of a wider scope, as it encompasses classical mechanics as a sub-discipline that is applicable under certain restricted circumstances. According to the correspondence principle, there is no contradiction or conflict between the two subjects, each simply pertains to specific situations. Quantum mechanics has superseded classical mechanics at the foundational level and is indispensable for the explanation and prediction of processes at molecular, atomic, and subatomic levels. However, for macroscopic processes, classical mechanics is able to solve problems that are unmanageably difficult in quantum mechanics and hence remains useful and well used.

Einsteinian versus Newtonian physics

Analogous to the quantum reformation of classical mechanics, Einstein's general and special theories of relativity have expanded the scope of mechanics beyond the mechanics of Newton and Galileo, and made fundamental corrections to them, that become significant and even dominant as speeds of material objects approach the speed of light, which cannot be exceeded.

Relativistic corrections are also needed for quantum mechanics, although relativity has not been fully integrated with it yet. This is one of the hurdles that has to be overcome in developing a Grand Unified Theory.

Types of mechanical bodies

The often-used term body needs to stand for a wide assortment of objects, including particles, projectiles, spacecraft, stars, parts of machinery, parts of solids, parts of fluids (gases and liquids), and so forth.

Other distinctions between the various sub-disciplines of mechanics, concern the nature of the bodies being described. Particles are bodies with little-known internal structure, treated as mathematical points in classical mechanics. Rigid bodies have size and shape, but retain a simplicity close to that of the particle, adding just a few so-called degrees of freedom, such as orientation in space.

Otherwise, bodies may be semi-rigid, that is, elastic, or non-rigid, that is, fluid. These subjects have both classical and quantum divisions of study.

For instance, the motion of a spacecraft, regarding its orbit and attitude (rotation), is described by the relativistic theory of classical mechanics. Analogous motions of an atomic nucleus are described by quantum mechanics.

Sub-disciplines of mechanics

The following two lists indicate various subjects that are studied under classical mechanics and quantum mechanics.

Classical mechanics

The following areas are included as part of the field of classical mechanics:

  • Newtonian mechanics, involves the original theory of motion (kinematics) and forces (dynamics)
  • Lagrangian mechanics, a theoretical formalism, based on the principle of conservation of energy
  • Hamiltonian mechanics, another theoretical formalism, based on the principle of the least action
  • Celestial mechanics, the motion of heavenly bodies, such as planets, comets, stars, and galaxies
  • Astrodynamics, for the navigation of spacecraft and similar objects
  • Solid mechanics, involving study of elasticity and the properties of (semi-)rigid bodies
  • Acoustics, dealing with sound (or density variation propagation) in solids, fluids, and gases.
  • Statics, dealing with semi-rigid bodies in mechanical equilibrium
  • Fluid mechanics, or the study of the motion of fluids
  • Soil mechanics, or the study of the mechanical behavior of soils
  • Continuum mechanics, involving the mechanics of continua (both solid and fluid)
  • Hydraulics, dealing with the mechanical properties of liquids
  • Fluid statics, dealing with liquids in equilibrium
  • Applied / Engineering mechanics, for technological applications
  • Biomechanics, studying biological materials
  • Biophysics, studying the physical processes in living organisms
  • Statistical mechanics, dealing with assemblies of particles too large to be described in a deterministic way
  • Relativistic or Einsteinian mechanics, dealing with universal gravitation

Quantum mechanics

The following areas are categorized as being part of the field of quantum mechanics:

  • Particle physics, related to the motion, structure, and reactions of particles
  • Nuclear physics, related to the motion, structure, and reactions of atomic nuclei
  • Condensed matter physics, involving the study of quantum gases, solids, and liquids
  • Quantum statistical mechanics, dealing with large assemblies of particles

In addition to the above areas, there is the "theory of fields," which constitutes a separate discipline in physics, formally treated as distinct from mechanics, whether classical fields or quantum fields. But in actual practice, subjects belonging to mechanics and fields are closely interwoven. Thus, for instance, forces that act on particles are frequently derived from fields (electromagnetic or gravitational), and particles generate fields by acting as sources. In fact, in quantum mechanics, particles themselves are fields, as described theoretically by the wave function.

See also

References
ISBN links support NWE through referral fees

  • Beer, Ferdinand Pierre, E. Russell Johnston, and John T. DeWolf. 2006. Mechanics of Materials. Boston: McGraw-Hill Higher Education. ISBN 978-0073107950.
  • Byron, Frederick W., and Robert W. Fuller. [1969] 1992. Mathematics of Classical and Quantum Physics. reprint ed., New York: Dover Publications. ISBN 048667164X.
  • Griffiths, David J. 2005. Introduction to Quantum Mechanics, 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall. ISBN 978-0131118928.
  • Hibbeler, R. C. 2007. Engineering Mechanics: Dynamics. Upper Saddle River, NJ: Pearson/Prentice Hall. ISBN 978-0132215046.
  • Hibbeler, R. C. 2008. Mechanics of Materials, 7th ed. Upper Saddle River, NJ: Prentice Hall. ISBN 978-0132209915.
  • Messiah, Albert. [1958] 1999. Quantum Mechanics. reprint ed., Mineola, NY: Dover Publications. ISBN 0486409244.
  • Munson, Bruce Roy, Donald F. Young, and T. H. Okiishi. 2006. Fundamentals of Fluid Mechanics. Hoboken, NJ: J. Wiley & Sons. ISBN 978-0471675822.
  • Taylor, John R. 2005. Classical Mechanics. Sausalito, CA: University Science Books. ISBN 978-1891389221.

External links

All links retrieved November 8, 2022.

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.