Nicolaus Copernicus

From New World Encyclopedia
Revision as of 03:54, 10 April 2006 by Lloyd Eby (talk | contribs)

Nicolaus Copernicus (February 19, 1473 – May 24, 1543), astronomer who provided the first modern formulation of a heliocentric (sun-centered) theory of the solar system in his epochal book, De revolutionibus orbium coelestium. That change, often known as the Copernican revolution, had important and far-reaching implications for science and cosmology, but also for theology, religion, and philosophy, and for the relationship between religion and science. Many authors suggest that only Euclid's geometry, Isaac Newton's physics and Charles Darwin's theory of evolution have exerted a comparable influence on human culture in general and on science in particular. Copernicus' concept marked a scientific revolution. Some, indeed, equate it with the initiation of "the scientific revolution." [1].

Copernicus was one of the great polymaths of his age. He was a mathematician, astronomer, jurist, physician, classical scholar, governor, administrator, diplomat, economist and soldier. Amid his extensive responsibilities, he treated astronomy as an avocation, but it is for his astronomical and cosmological work that he has been remembered and accorded a place as one of the most important scientific figures in human history.

The Copernican Revolution

Copernicus's formulation of heliocentric cosmology, the view that the sun is at the center of the universe — in contrast to the view that the Earth is at the center, known as Ptolemaic cosmology or geocentric cosmology — is almost universally considered to be one of the most important scientific hypotheses in history, as well as being of extraordinary importance in the history of human knowledge altogether. It came to mark the starting point of modern astronomy and modern science, and is often known as the Copernican revolution.

Besides its importance to science, astronomy, and cosmology, the Copernican revolution also had profound implications for religion and theology, and for philosophy. As one website describes this: "It is hard to [over]estimate the importance of this work: it challenged the age long views of the way the universe worked and the preponderance of the Earth and, by extension, of human beings. The realization that ... our planet, and indeed our solar system (and even our galaxy) are quite common in the heavens and reproduced by myriads of planetary systems provided a sobering (though unsettling) view of the universe. All the reassurances of the cosmology of the Middle Ages were gone, and a new view of the world, less secure and comfortable, came into being. Despite these 'problems' and the many critics the model attracted, the system was soon accepted by the best minds of the time such as Galileo." (Adapted from the website http://physics.ucr.edu/~wudka/Physics7/Notes_www/node41.html)

The construction and/or acceptance of Ptolemaic cosmology, also known as geocentric cosmology, had been based on a number of assumptions and arguments that were philosophical and religious or theological in nature. First was Aristotle's notion that things are naturally fixed and unmoving unless something moves them. A second assumption was that the place of humans as children of God — an assertion made by by both Jewish and Christian doctrine — and thus the highest or most important beings in the cosmos (except for those who held angels to be higher than humans), requires that Earth as the dwelling place of humans be at the center of the universe. A third assumption was that philosophy and logic and theology are paramount in importance over natural science and its methods. A fourth assumption had to do with falling bodies: the Ptolemaic view had held that if the Earth were not the center of the cosmos, then things would not fall to Earth when thrown into the sky and that the Earth itself would fall toward whatever was the center. A fifth was that, if the Earth moved, then things thrown into air above the Earth would be "left behind" and not fall to Earth as the Earth moved. A sixth was that, if the Earth moved this would be a contradiction of Biblical Scripture, since the Bible says that Joshua commanded the Sun and moon to be still (not the Earth) and cease moving across the sky (Joshua 10: 12-13), and that this actually happened.

Today we know that each of those assumptions was incorrect. We now know that the principle of inertia means that moving things will continue to move unless some force stops them. The place of humans in the universe as the children of God does not depend on man's physical location, or the location of Earth, or the size or prominence of the Earth's Sun, or the prominence of the Milky Way — the galaxy in which Earth is situated — in the cosmos. When there is a conflict between them, natural science and its methods can and frequently should take precedence over philosophy, theology, and religion. Falling bodies fall toward whatever attracts them gravitationally; moreover things thrown up into the air from Earth are already part of Earth's inertial system, so they move as the Earth moves and fall back to earth having moved as the Earth moved during their flight. Whether or not the claim in Joshua is factually true, the appearance that the sun and the moon stopped their movement — assuming, for the sake of argument, that they actually appeared to do so — would have been the same had the Earth's rotation stopped or slowed down; this proves that a geocentric theory is not necessary in order to preserve the notion of scriptural inerrancy. (For one discussion of the Joshua issue, see the website http://www.blueletterbible.org/faq/nbi/625.html)

The notion of a "Copernican Revolution" became important in philosophy as well as in science. For one thing, philosophy of science had to recognize that science did not and does not grow in a smooth and continuous pattern. Instead, there are sometimes revolutions in which one scientific pattern or paradigm is overthrown by another. Later on in the 20th century the American historian and philosopher of science Thomas Kuhn would make scientific revolutions and the notion of a "paradigm" central points in his monumental and highly influential work, The Structure of Scientific Revolutions. German philosopher Immanuel Kant captured the symbolic character of Copernicus' revolution — its transcendent rationalism — postulating that it was human rationality that was the true interpreter of observed phenomena. In addition he referred to his own work as being a "Copernican revolution" in philosophy. More recent philosophers, too, have found continuing validity and philosophical meaning in Copernicanism.

Since the Copernican heliocentric system was rejected for theological and philosophical reasons by both the Catholic and Lutheran Churches of his day, Copernicus inevitably came into conflict with them. This may not have been the first time in human history when a clash between religion and science occurred, but it was the most significant one up to that time, and that clash — often known as a warfare between science and religion — continues in some form and with sometimes waxing and sometimes waning intensity to this day. A result was a frequent breach between science and scientifically inclined people, on the one hand, and religion and more religiously inclined people on the other. An important result of the Copernican revolution was to encourage young astronomers, scientists and scholars to take a more skeptical attitude toward established dogma, a tendency that continues to this day.

Nicolaus Copernicus

Copernicus' work did seem to contradict then-accepted religious dogma; people did and have continued to infer from it that there was no need of an entity (God) that granted a soul, power and life to the world and to human beings because science could explain everything that was attributed to God. But Copernicanism also opened a way to immanence, the view that a divine force, or a divine being, pervades all things that exist, a view that has since been developed further in modern philosophy. Immanentism also can lead to subjectivism, to the theory that it is perception that creates reality, that there is no underlying reality that exists independent of perception. Thus some argue that Copernicanism demolished the foundations of medieval science and metaphysics.

A corollary of Copernicanism is that scientific law need not be directly congruent with appearance or perception. This contrasts with Aristotle's system, which placed much more importance on the derivation of knowledge through the senses.

Quotes

Goethe:

"Of all discoveries and opinions, none may have exerted a greater effect on the human spirit than the doctrine of Copernicus. The world had scarcely become known as round and complete in itself when it was asked to waive the tremendous privilege of being the center of the universe. Never, perhaps, was a greater demand made on mankind — for by this admission so many things vanished in mist and smoke! What became of our Eden, our world of innocence, piety and poetry; the testimony of the senses; the conviction of a poetic — religious faith? No wonder his contemporaries did not wish to let all this go and offered every possible resistance to a doctrine which in its converts authorized and demanded a freedom of view and greatness of thought so far unknown, indeed not even dreamed of."

Copernicus:

"For I am not so enamored of my own opinions that I disregard what others may think of them. I am aware that a philosopher's ideas are not subject to the judgement of ordinary persons, because it is his endeavor to seek the truth in all things, to the extent permitted to human reason by God. Yet I hold that completely erroneous views should be shunned. Those who know that the consensus of many centuries has sanctioned the conception that the earth remains at rest in the middle of the heaven as its center would, I reflected, regard it as an insane pronouncement if I made the opposite assertion that the earth moves.
"For when a ship is floating calmly along, the sailors see its motion mirrored in everything outside, while on the other hand they suppose that they are stationary, together with everything on board. In the same way, the motion of the earth can unquestionably produce the impression that the entire universe is rotating.
"Therefore alongside the ancient hypotheses, which are no more probable, let us permit these new hypotheses also to become known, especially since they are admirable as well as simple and bring with them a huge treasure of very skillful observations. So far as hypotheses are concerned, let no one expect anything certain from astronomy, which cannot furnish it, lest he accept as the truth ideas conceived for another purpose, and depart from this study a greater fool than when he entered it. Farewell."

Declaration of the Polish Senate issued on 12th of June 2003.

"At the time of five hundred thirty anniversary of birth and four hundred sixty date of death of Mikołaj Kopernik,the Senat of Republic of Poland expresses its highest respect and praise for this exceptional Pole, one of the greatest scientists in the history of the world. Mikołaj Kopernik, world famous astronomer, author of the breakthrough work "O obrotach sfer niebieskich" is the the one who "Held the Sun and moved Earth". He distinguished himself for the country as exceptional mathematician, economist, lawyer, doctor and priest, as well as defender of the Olsztyn Castle during Polish-Teutonic war. May memory about his achievements last and be a source of inspiration for future generations."


Nicolaus Copernicus

Biography of Copernicus

Toruń City Hall.

Copernicus was born in 1473. When he was ten years old, his father, a wealthy businessman, copper trader, and respected citizen of Toruń, died. Little is known of Copernicus' mother, Barbara Watzenrode, who appears to have predeceased her husband. Copernicus' maternal uncle, Lucas Watzenrode the Younger|Lucas Watzenrode, a church canon and later Prince-Bishop governor of Warmia, reared him and his three siblings after the death of his father. His uncle's position helped Copernicus in the pursuit of a career within the church, enabling him to devote time for his astronomy studies. Copernicus had a brother and two sisters:

  • Andreas became a canon at Frombork (Frauenburg)
  • Barbara became a Benedictine nun
  • Katharina married a businessman and city councillor, Barthel Gertner

In 1491 Copernicus enrolled at the Jagiellonian University in Kraków, where he probably encountered astronomy for the first time, taught by his teacher Albert Brudzewski. This science soon fascinated him, as shown by his books which were later carried off as war booty by the Swedes during "The Deluge", to the Uppsala University Library). After four years at Kraków, followed by a brief stay back home at Toruń, he went to Italy, where he studied law and medicine at the universities of Bologna and Padua. His bishop-uncle financed his education and wished for him to become a bishop as well. However, while studying canon and civil law at Ferrara, Copernicus met the famous astronomer, Domenico Maria Novara da Ferrara. Copernicus attended his lectures and became his disciple and assistant. The first observations that Copernicus made in 1497, together with Novara, are recorded in Copernicus' epochal book, De revolutionibus orbium coelestium.

Seated statue of Copernicus, by Bertel Thorvaldsen, before the Polish Academy of Sciences in Warsaw.

In 1497 Copernicus' uncle was ordained Bishop of Warmia, and Copernicus was named a canon at Frombork (Frauenburg) Cathedral, but he waited in Italy for the great Jubilee of 1500. Copernicus went to Rome, where he observed a lunar eclipse and gave some lectures in astronomy or mathematics.

He would thus have visited Frombork only in 1501. As soon as he arrived, he requested and obtained permission to return to Italy to complete his studies at Padua (with Guarico and Fracastoro) and at Ferrara (with Giovanni Bianchini), where in 1503 he received his doctorate in canon law. It has been supposed that it was in Padua that he encountered passages from Cicero and Plato about opinions of the ancients on the movement of the Earth, and formed the first intuition of his own future theory. His collection of observations and ideas pertinent to his theory began in 1504.

Having left Italy at the end of his studies, he came to live and work at Frombork. Some time before his return to Warmia, he had received a position at the Collegiate Church of the Holy Cross in Wrocław (Breslau), Silesia, which he would resign a few years before his death. Through the rest of his life he made astronomical observations and calculations, but always in his spare time and never as a profession.

Copernicus worked for years with the Prussian Diet on monetary reform and published some studies about the value of money; as governor of Warmia, he administered taxes and dealt out justice. It was at this time (beginning in 1519, the year of Thomas Gresham's birth) that Copernicus came up with one of the earliest iterations of the theory now known as Gresham's Law. During these years he also travelled extensively on government business and as a diplomat, on behalf of the Prince-Bishop of Warmia.

In 1514 he made his Commentariolus — a short handwritten text describing his ideas about the heliocentric hypothesis — available to friends. Thereafter he continued gathering evidence for a more detailed work. During the war between the Teutonic Order and the Kingdom of Poland (1519–1524) Copernicus successfully defended Allenstein (Olsztyn) at the head of royal troops besieged by the forces of Albert of Brandenburg.

The astronomer Copernicus: Conversation with God. Painting by Jan Matejko.

In 1533 Albert Widmannstadt delivered a series of lectures in Rome, outlining Copernicus' theory. These lectures were watched with interest by several catholic cardinals, including Pope Clement VII. By 1536 Copernicus' work was already in definitive form, and some rumors about his theory had reached educated people all over Europe. From many parts of the continent, Copernicus received invitations to publish. In a letter, dated Rome, 1 November, 1536, Cardinal Nicola Schönberg of Capua wrote, asking Copernicus to communicate his ideas more widely and requesting a copy for himself; "Therefore, learned man, without wishing to be inopportune, I beg you most emphatically to communicate your discovery to the learned world, and to send me as soon as possible your theories about the Universe, together with the tables and whatever else you have pertaining to the subject." Some have suggested that this note may have made Copernicus leery of publication, while others have suggested that this letter indicates that the Church wanted to ensure that his ideas were published.

In spite the insistence of many, Copernicus kept delaying the final publication of his book; a main reason for it was probably the fear of criticism for his revolutionary work by the establishment. He was still completing his masterpiece (even if he was not convinced that he wanted to publish it) when in 1539 Georg Joachim Rheticus, a great mathematician from Wittenberg, arrived in Frombork. Philipp Melanchthon had arranged for Rheticus to visit several astronomers and study with them. Rheticus became a disciple of Copernicus' and stayed with him for two years, during which he wrote a book, Narratio prima, outlining the essence of the theory.

In 1542, in Copernicus' name, Rheticus published a treatise on trigonometry (later included in the second book of De revolutionibus). Under strong pressure from Rheticus, and having seen that the first general reception of his work had been favorable, Copernicus finally agreed to give the book to his close friend Tiedemann Giese, bishop of Chełmno (Kulm), to be delivered to Rheticus for printing in Nuremberg (Nürnberg).

Legend says that the first printed copy of De revolutionibus was placed in Copernicus' hands on the day he died, so that he could take farewell of his opus vitae. He supposedly woke from a stroke-induced coma, looked at his book, and died peacefully.

Copernicus was buried in Frombork Cathedral. Archeologists searching for his remains had failed to locate them, though they had found interesting graves from various periods. On November 3, 2005, archeologists announced that in August they had recovered Copernicus' skull (see Grave below).

The Copernican heliocentric system

Earlier theories

Much has been written about earlier heliocentric theories. Philolaus (4th century B.C.E.) was one of the first to hypothesize movement of the Earth, probably inspired by Pythagoras' theories about a spherical Globe.

Aristarchus of Samos in the 3rd century B.C.E. had developed some theories of Heraclides Ponticus (speaking of a revolution by Earth on its axis) to propose what was, so far as is known, the first serious model of a heliocentric solar system. His work about a heliocentric system has not survived, so one may only speculate about what led him to his conclusions. It is notable that, according to Plutarch, a contemporary of Aristarchus accused him of impiety for "putting the Earth in motion."

Aryabhata from India was the first to note that Earth is round. He says "Bhumukha sarvato golah" (Earth is round) and Bhaskara I, also anticipated Copernicus' discoveries by about 1,000 years. The work of the 14th-century Arab astronomer Ibn al-Shatir contains findings similar to Copernicus', and it has been suggested that Copernicus might have been influenced by them.

Copernicus cited Aristarchus and Philolaus in an early manuscript of his book which survives, stating: "Philolaus believed in the mobility of the earth, and some even say that Aristarchus of Samos was of that opinion." For reasons unknown, he struck this passage before publication of his book.

Inspiration came to Copernicus not from observation of the planets, but from reading two authors. In Cicero he found an account of the theory of Hicetas. Plutarch provided an account of the Pythagoreans Heraclides Ponticus, Philolaus, and Ecphantes. These authors had proposed a moving earth that revolved around a central sun. Copernicus did not attribute his inspiration to Aristarchus as is sometimes stated. When Copernicus' book was published, it contained an unauthorized preface by the Lutheran theologian Andreas Osiander. This cleric stated that Copernicus wrote his heliocentric account of the earth's movement as a mere mathematical hypothesis, not as an account that contained truth or even probability. This was apparently written to soften any religious backlash against the book, but there is no evidence that Copernicus considered the heliocentric model as merely mathematically convenient, separate from reality. Copernicus' hypothesis contradicted the account of the sun's movement around the earth that appears in the Old Testament (Joshua 10:13).

It has been argued that in developing the mathematics of heliocentrism Copernicus drew on, not just the Greek, but the Arabic tradition of mathethematics, especially the work of Nasir al-Din al-Tusi and Mu’ayyad al-Din al-‘Urdi.

The Ptolemaic system

The prevailing theory in Europe as Copernicus was writing was that created by Ptolemy in his Almagest, dating from about 150 A.D.. The Ptolemaic system drew on many previous theories that viewed Earth as a stationary center of the universe. Stars were embedded in a large outer sphere which rotated relatively rapidly, while the planets dwelt in smaller spheres between — a separate one for each planet. To account for apparent anomalies to this view, such as the retrograde motion observed in many planets, a system of epicycles was used, by which a planet rotated on a small axis while also rotating on a larger axis around the Earth. Some planets were assigned "major" epicycles (by which retrograde motion could be observed) and "minor" epicycles (which simply warped the overall rotation).

A complementary theory to Ptolemy's employed homocentric spheres: the spheres within which the planets rotated, could themselves rotate somewhat. Also popular with astronomers were variations such as eccentrics — by which the rotational axis was offset and not completely at the center — or that added epicycles to epicycles.

Ptolemy's unique contribution to this theory was the idea of an equant — a complicated addition which specified that, when measuring the rotation of the Sun, one sometimes used the central axis of the universe, but sometimes one set at a different location. This had an overall effect of making certain orbits "wobble," a fact that would greatly bother Copernicus (such wobbling rendered implausible the idea of material "spheres" in which the planets rotated). In the end, after all these complications, the astronomers could still not get observation and theory to match up exactly. In Copernicus' day, the most up-to-date version of the Ptolomaic system was that of Peurbach (1423-1461) and Regiomontanus (1436-1476).

Copernican theory

Copernicus' major theory was published in the book, De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres) in the year of his death, 1543, though he had arrived at his theory several decades earlier.

Statue of Copernicus next to the Jagiellonian University's Collegium Novum (New College), in Kraków. Courtesy of Henryart.

The book marks the beginning of the shift away from a geocentric (and anthropocentric) universe with the Earth at its center. Copernicus held that the Earth is another planet revolving around the fixed sun once a year, and turning on its axis once a day. He arrived at the correct order of the known planets and explained the precession of the equinoxes correctly by a slow change in the position of the Earth's rotational axis. He also gave a clear account of the cause of the seasons: that the Earth's axis is not perpendicular to the plane of its orbit. He added another motion to the Earth, by which the axis is kept pointed throughout the year at the same place in the heavens; since Galileo Galilei, it has been recognized that for the Earth not to point to the same place would have been a motion.

Copernicus also replaced Ptolemy's equant circles with more epicycles. This is the main source of the statement that Copernicus' system had even more epicycles than Ptolemy's. With this change, Copernicus' system showed only uniform circular motions, correcting what he saw as the chief inelegance in Ptolemy's system. But while Copernicus put the Sun at the center of the celestial spheres, he did not put it at the exact center of the universe, but near it.

Copernicus' system was not experimentally better than Ptolemy's model. Copernicus was aware of this and could not present any observational "proof" in his manuscript, relying instead on arguments about what would be a more complete and elegant system. From publication until about 1700, few astronomers were convinced by the Copernican system, though the book was relatively widely circulated (around 500 copies are known to still exist, which is a large number by the scientific standards of the time). Many astronomers, however, accepted some aspects of the theory at the expense of others, and his model did have a large influence on later scientists such as Galileo and Johannes Kepler, who adopted, championed and (especially in Kepler's case) sought to improve it. Galileo's observation of the phases of Venus produced the first observational evidence for Copernicus' theory.

The Copernican system can be summarized in seven propositions, as Copernicus himself collected them in a Compendium of De revolutionibus that was found and published in 1878.

The seven parts of Copernicus' theory are:

1. There is no one center in the universe.

2. The Earth's center is not the center of the universe.

3. The center of the universe is near the sun.

4. The distance from the Earth to the sun is imperceptible compared with the distance to the stars.

5. The rotation of the Earth accounts for the apparent daily rotation of the stars.

6. The apparent annual cycle of movements of the sun is caused by the Earth revolving around the sun.

7. The apparent retrograde motion of the planets is caused by the motion of the Earth, from which one observes.


Whether these propositions were "revolutionary" or "conservative" was a topic of debate in the late twentieth century. Thomas Kuhn argued that Copernicus only transferred "some properties to the sun many astronomical functions previously attributed to the earth." Other historians have since argued that Kuhn underestimated what was "revolutionary" about Copernicus' work, and emphasized the difficulty Copernicus would have had in putting forward a new astronomical theory relying alone on simplicity in geometry, given that he had no experimental evidence.

De revolutionibus orbium coelestium

Title page of De revolutionibus Orbium Coelestium (Part VI, Basel edition)

Main article: De revolutionibus orbium coelestium.

Copernicus' major work, On the Revolutions of the Heavenly Spheres (1543), was the result of decades of labor. It opened with an originally anonymous preface by Andreas Osiander, a theologian friend of Copernicus, who urged that the theory, which was considered a tool that allows simpler and more accurate calculations, did not necessarily have implications outside the limited realm of astronomy. Copernicus' actual book began with a letter from his (by then deceased) friend Nicola Schönberg, the Archbishop of Capua, urging Copernicus to publish his theory. Then, in a lengthy introduction, Copernicus dedicated the book to Pope Paul III, explaining his ostensible motive in writing the book as relating to the inability of earlier astronomers to agree on an adequate theory of the planets, and noting that if his system increased the accuracy of astronomical predictions it would allow the Church to develop a more accurate calendar. At that time, a reform of the Julian Calendar was considered necessary and was one of the major reasons for Church funding of astronomy.

The work itself was then divided into six books:

  1. General vision of the heliocentric theory, and a summarized exposition of his idea of the World
  2. Mainly theoretical, presents the principles of spherical astronomy and a list of stars (as a basis for the arguments developed in the subsequent books)
  3. Mainly dedicated to the apparent motions of the Sun and to related phenomena
  4. Description of the Moon and its orbital motions
  5. Concrete exposition of the new system
  6. Concrete exposition of the new system

Grave

Frombork Catherdral - Copernicus' burial place

In August 2005, a team of archeologists led by Jerzy Gąssowski, head of an archaeology and anthropology institute in Pułtusk, discovered what they believe to be Copernicus' grave and remains, after scanning beneath the floor of Frombork Cathedral. The find came after a year of searching, and the discovery was announced only after further research, on November 3. Gąssowski said he was "almost 100 percent sure it is Copernicus". Forensic experts used the skull to reconstruct a face that closely resembled the features — including a broken nose and a scar above the left eye — on a Copernicus self-portrait [2]. The experts also determined that the skull had belonged to a man who had died about age 70 — Copernicus' age at the time of his death.

The grave was in poor condition, and not all the remains were found. The archeologists hoped to find relatives of Copernicus in order to attempt DNA identification.

Historical background to the question of Copernicus' nationality

Because of geographical uncertainties it remains a matter of dispute to this day whether Copernicus was German or Polish.[1] The father of Copernicus, also named Nicolaus and probably Koppernigk, had been a citizen of Kraków, then the capital of Poland, but left this city in 1460 to move to Toruń (Thorn). This city was part of the Hanseatic League, as well as the Prussian Confederation which, some years before Copernicus' birth, staged an uprising (which shortly led to the Thirteen Years' War when they asked the Polish king to join Prussia to his kingdom) to gain independence from the Teutonic Knights who had ruled the area for two hundred years, imposing high taxes which were hindering the economic development in the province. With the Second Treaty of Thorn in 1466, the city as well as Prussia's western part called Royal Prussia became connected to the Kingdom of Poland, which had supported the uprising, while the eastern part remained under administration of the Teutonic Order to become Ducal Prussia later on.

Copernicus, called Mikołaj Kopernik in Polish and Nikolaus Kopernikus in German was born in Toruń (Thorn) and spent most of his working life in Royal Prussia which enjoyed substantial autonomy as part of the lands of the Polish Crown - it had its own Diet, treasury and monetary unit (to which Copernicus' contributed) and armies. He also oversaw the defense of Allenstein/Olsztyn at the head of forces of the Polish king when the troops of Albert of Brandenburg besieged the castle.

In the 19th century, with the rise of German and Polish nationalism, attempts were made to claim that Copernicus was exclusively a German and to discount his connection with Poland[2], however after 1945 those attempts have greatly diminished. In a mirror image of this, some Poles attempted to claim Copernicus exclusively and attempted to downplay his possible German ethnic origin. It is quite possible that his family was ethnically German, and Copernicus was certainly fluent in the German language, while no direct evidence of the extent to which he knew Polish has survived. His main language for written communication was Latin. However, Copernicus was born in western Prussia, later known as Royal Prussia or Polish Prussia, due to its connection to the Kingdom of Poland. He became a burgher of Prussian Ermland or Warmia, an exempt Prince-Bishopric, throughout the rest of his life and he was a loyal subject of the Catholic Prince-Bishops at a time when most of Prussia and Germany had become Protestant. Today he is broadly considered to be Polish. At the same time, it must be remembered that during Copernicus' lifetime nationality played a much less significant role that it did later, and people generally did not think of themselves primarily as Poles or Germans [3]. Therefore, in a modern context, Copernicus may be viewed as an ethnically German Pole.

See also

  • Copernicus (lunar crater)
  • Inferior planet
  • Superior planet
  • Polymath
  • Nicolaus Copernicus University in Toruń (established in 1945)

Bibliography

Works of Copernicus

  • The complete works of Copernicus are collected in On the Revolutions, ed. and trans. by Edward Rosen (1978, reissued 1992), and Minor Works, ed. and trans. by Edward Rosen and Erna Hilfstein (1985, reissued 1992). Three Copernican Treatises, trans. by Edward Rosen (1971) contains, in addition, a biography and a bibliography of works on Copernicus from 1939-70.

Biographies of Copernicus

  • Edward Rosen (1884), Copernicus and the Scientific Revolution. Malabar, FL: Krieger.
  • Jan Adamczewski and Edward J. Piszek (1974; orig. pub. in Polish, 1972), Nicolaus Copernicus and His Epoch.

Works About Copernicus and His Work

  • Angus Armitage (1951), The World of Copernicus, New York, Mentor Books. ISBN 0846409798.
  • Hans Blumenberg (1987; orig. pub. in German, 1972), The Genesis of the Copernican World.
  • J. L. E. Dreyer (1953), A History of Astronomy from Thales to Kepler, 2nd ed.
  • Owen Gingrich (1993), The Eye of Heaven: Ptolemy, Copernicus, Kepler.
  • Owen Gingerich (2004), The Book Nobody Read, Penguin Books. ISBN 0143034766.
  • David C. Goodman and Colin A. Russell, eds. (1991). The Rise of Scientific Europe, 1500-1800, Dunton Green, Sevenoaks, Kent: Hodder & Stoughton: The Open University. ISBN 034055861X.
  • Fred Hoyle (1973), Nicolaus Copernicus: An Essay on His Life and Work.
  • Alexander Koyre (1973, reissued 1992; orig. pub. in French, 1961), The Astronomical Revolution.
  • Thomas Kuhn (1957, reissued 1985), The Copernican Revolution: Planetary Astronomy in the Development of Western Thought, Cambridge, MA: Harvard University Press. ISBN 0674171004.
  • Thomas Kuhn (1962, 2nd ed. 1970), The Structure of Scientific Revolutions. Chicago: The University of Chicago Press.
  • David C. Lindberg, ed. (1978), Science in the Middle Ages.
  • Harold P. Nebelsick (1985), Circles of God: Theology and Science from the Greeks to Copernicus.
  • Robert S. Westman, ed. (1975), The Copernican Achievement.

External links

Wikiquote-logo-en.png
Wikiquote has a collection of quotations related to:
Commons
Wikimedia Commons has media related to::

External links to sources

External links about Copernicus

External links about De Revolutionibus

External links related to Copernicus legacy

German-Polish Cooperations in tradition of Copernicus


Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.

  1. Understanding Contemporary Germany [3]
  2. Diemut Majer, Non-Germans Under the Third Reich: The Nazi Judicial and Administrative System in Germany, [4]
  3. Norman Davies, God's Playground: A History of Poland, [5]