Difference between revisions of "Air pollution" - New World Encyclopedia

From New World Encyclopedia
(article imported and credit applied)
 
Line 1: Line 1:
 
{{pollution}}
 
{{pollution}}
'''Air pollution''' is a [[chemical]], [[Particulate|particulate matter]], or [[Biological material|biological agent]] that modifies the natural characteristics of the [[Earth's atmosphere|atmosphere]]. The atmosphere is a complex, dynamic natural gaseous system that is essential to support life on planet Earth.  [[Stratosphere|Stratospheric]] [[ozone depletion]] due to air pollution has long been recognized as a threat to human health as well as to the Earth's [[ecosystems]].
+
'''Air pollution''' is a [[chemical]], [[Particulate|particulate matter]], or [[Biological material|biological agent]] that modifies the natural characteristics of the [[Earth's atmosphere|atmosphere]]. The atmosphere is a complex, dynamic natural gaseous system that is essential to support life on planet Earth.  [[Stratosphere|Stratospheric]] [[ozone depletion]] due to air pollution has long been recognized as a threat to human [[health]] as well as to the Earth's [[ecosystems]].
  
 
Worldwide air pollution is responsible for large numbers of deaths and cases of [[respiratory disease]].  While [[major stationary source]]s are often identified with air pollution, the greatest [[AP 42 Compilation of Air Pollutant Emission Factors|source of emissions]] is actually mobile sources, mainly [[automobile]]s. Gases such as [[carbon dioxide]], which contribute to [[global warming]], have recently gained recognition as pollutants by some scientists. Others recognize the gas as being essential to life, and therefore incapable of being classed as a pollutant.
 
Worldwide air pollution is responsible for large numbers of deaths and cases of [[respiratory disease]].  While [[major stationary source]]s are often identified with air pollution, the greatest [[AP 42 Compilation of Air Pollutant Emission Factors|source of emissions]] is actually mobile sources, mainly [[automobile]]s. Gases such as [[carbon dioxide]], which contribute to [[global warming]], have recently gained recognition as pollutants by some scientists. Others recognize the gas as being essential to life, and therefore incapable of being classed as a pollutant.
Line 9: Line 9:
 
There are many substances in the air which may impair the health of plants and animals (including humans), or reduce visibility. These arise both from natural processes and human activity. Substances not naturally found in the air or at greater concentrations or in different locations from usual are referred to as 'pollutants'.
 
There are many substances in the air which may impair the health of plants and animals (including humans), or reduce visibility. These arise both from natural processes and human activity. Substances not naturally found in the air or at greater concentrations or in different locations from usual are referred to as 'pollutants'.
  
Pollutants can be classified as either primary or secondary. Primary pollutants are substances directly produced by a process, such as ash from a volcanic eruption or the carbon monoxide gas from a motor vehicle exhaust.
+
Pollutants can be classified as either primary or secondary. Primary pollutants are substances directly produced by a process, such as ash from a volcanic eruption or the [[carbon monoxide]] gas from a motor vehicle exhaust.
  
 
Secondary pollutants are not emitted. Rather, they form in the air when primary pollutants react or interact. An important example of a secondary pollutant is ground level ozone - one of the many secondary pollutants that make up photochemical smog.
 
Secondary pollutants are not emitted. Rather, they form in the air when primary pollutants react or interact. An important example of a secondary pollutant is ground level ozone - one of the many secondary pollutants that make up photochemical smog.
Line 44: Line 44:
 
* "Mobile Sources" as motor vehicles, aircraft etc.
 
* "Mobile Sources" as motor vehicles, aircraft etc.
 
* Combustion-fired [[power plant]]s  
 
* Combustion-fired [[power plant]]s  
* [[Controlled burn]] practices used in agriculture and forestry management
+
* [[Controlled burn]] practices used in [[agriculture]] and forestry management
 
* [[Roadway air dispersion modeling|Motor vehicles generating air pollution emissions]].
 
* [[Roadway air dispersion modeling|Motor vehicles generating air pollution emissions]].
 
* Marine vessels, such as [[container ships]] or [[cruise ships]], and related [[port]] air pollution.
 
* Marine vessels, such as [[container ships]] or [[cruise ships]], and related [[port]] air pollution.
Line 54: Line 54:
 
* Fumes from [[paint]], [[hair spray]], [[varnish]], [[aerosol spray]]s and other solvents.
 
* Fumes from [[paint]], [[hair spray]], [[varnish]], [[aerosol spray]]s and other solvents.
 
* Waste deposition in [[landfill]]s, which generate [[methane]].  
 
* Waste deposition in [[landfill]]s, which generate [[methane]].  
* Military uses, such as [[nuclear weapon]]s, [[toxic gas]]es, [[germ warfare]] and [[rocket]]ry.
+
* [[Military]] uses, such as [[nuclear weapon]]s, [[toxic gas]]es, [[germ warfare]] and [[rocket]]ry.
  
 
'''Natural sources'''
 
'''Natural sources'''
Line 68: Line 68:
 
Indoor pollution fatalities may be caused by using [[pesticide]]s and other chemical sprays indoors without proper ventilation.
 
Indoor pollution fatalities may be caused by using [[pesticide]]s and other chemical sprays indoors without proper ventilation.
  
[[Carbon monoxide]] (CO) poisoning and fatalities are often caused by faulty vents and chimneys, or by the burning of [[charcoal]] indoors. 56,000 Americans died from CO in the period [[1979]]-[[1988]].{{Fact|date=February 2007}} Chronic carbon monoxide poisoning can result even from poorly adjusted [[pilot light]]s. Traps are built into all domestic [[plumbing]] to keep sewer gas, [[hydrogen sulfide]], out of interiors.  Clothing emits [[tetrachloroethylene]], or other dry cleaning fluids, for days after [[dry cleaning]].
+
[[Carbon monoxide]] (CO) [[poison|poisoning]] and fatalities are often caused by faulty vents and chimneys, or by the burning of [[charcoal]] indoors. 56,000 Americans died from CO in the period 1979-1988.{{Fact|date=February 2007}} Chronic carbon monoxide poisoning can result even from poorly adjusted [[pilot light]]s. Traps are built into all domestic [[plumbing]] to keep sewer gas, [[hydrogen sulfide]], out of interiors.  Clothing emits [[tetrachloroethylene]], or other dry cleaning fluids, for days after [[dry cleaning]].
  
Though its use has now been banned in many countries, the extensive use of asbestos in industrial and domestic environments in the past has left a potentially very dangerous material in many localities. [[Asbestosis]] is a chronic [[Inflammation|inflammatory]] medical condition affecting the tissue of the [[lung]]s. It occurs after long-term, heavy exposure to asbestos from asbestos-containing materials in structures. Sufferers have severe [[dyspnea]] (shortness of breath) and are at an increased risk regarding several different types of [[lung cancer]].  As clear explanations are not always stressed in non-technical literature, care should be taken to distinguish between several forms of relevant diseases. According to the [http://www.euro.who.int/document/aiq/6_2_asbestos.pdf World Health Organisation (WHO)], these may defined as; [[asbestosis]], ''lung cancer'', and ''[[mesothelioma]]'' (generally a very rare form of cancer, when more widespread it is almost always associated with prolonged exposure to asbestos).
+
Though its use has now been [[ban]]ned in many countries, the extensive use of asbestos in industrial and domestic environments in the past has left a potentially very dangerous material in many localities. [[Asbestosis]] is a chronic [[Inflammation|inflammatory]] medical condition affecting the tissue of the [[lung]]s. It occurs after long-term, heavy exposure to asbestos from asbestos-containing materials in structures. Sufferers have severe [[dyspnea]] (shortness of breath) and are at an increased risk regarding several different types of [[lung cancer]].  As clear explanations are not always stressed in non-technical literature, care should be taken to distinguish between several forms of relevant diseases. According to the [http://www.euro.who.int/document/aiq/6_2_asbestos.pdf World Health Organisation (WHO)], these may defined as; asbestosis, ''lung cancer'', and ''[[mesothelioma]]'' (generally a very rare form of cancer, when more widespread it is almost always associated with prolonged exposure to asbestos).
  
 
Biological sources of air pollution are also found indoors, as gases and airborne particulates. [[Pet]]s produce dander, people produce dust from minute skin flakes and decomposed hair, dust [[mite]]s in bedding, carpeting and furniture produce enzymes and micron-sized fecal droppings, inhabitants emit [[methane]], [[mold]] forms in walls and generates [[mycotoxins]] and spores, [[air conditioning]] systems can incubate [[Legionellosis|Legionnaires' disease]] and mold,  and [[houseplant]]s, soil and surrounding [[gardens]] can produce [[pollen]], dust, and mold. Indoors, the lack of air circulation allows these airborne pollutants to accumulate more than they would otherwise occur in nature.
 
Biological sources of air pollution are also found indoors, as gases and airborne particulates. [[Pet]]s produce dander, people produce dust from minute skin flakes and decomposed hair, dust [[mite]]s in bedding, carpeting and furniture produce enzymes and micron-sized fecal droppings, inhabitants emit [[methane]], [[mold]] forms in walls and generates [[mycotoxins]] and spores, [[air conditioning]] systems can incubate [[Legionellosis|Legionnaires' disease]] and mold,  and [[houseplant]]s, soil and surrounding [[gardens]] can produce [[pollen]], dust, and mold. Indoors, the lack of air circulation allows these airborne pollutants to accumulate more than they would otherwise occur in nature.
  
 
== Health effects ==
 
== Health effects ==
The [[World Health Organization]] thinks that 4.6 million people die each year from causes directly attributable to air pollution. Many of these mortalities are attributable to [[indoor air pollution]]. Worldwide more deaths per year are linked to air pollution than to [[automobile]] accidents. Published in [[2005]] suggests that 310,000 Europeans die from air pollution annually.  Direct causes of air pollution related deaths include aggravated [[asthma]], [[bronchitis]], [[emphysema]], lung and heart diseases, and respiratory allergies.  The [[United States Environmental Protection Agency|US EPA]] estimates that a proposed set of changes in [[diesel]] engine technology (''Tier 2'') could result in 12,000 fewer ''premature mortalities'', 15,000 fewer [[myocardial infarction|heart attack]]s, 6,000 fewer [[emergency room]] visits by children with [[asthma]], and 8,900 fewer respiratory-related hospital admissions each year in the United States.
+
The [[World Health Organization]] thinks that 4.6 million people die each year from causes directly attributable to air pollution. Many of these mortalities are attributable to [[indoor air pollution]]. Worldwide more deaths per year are linked to air pollution than to [[automobile]] accidents. Published in 2005 suggests that 310,000 Europeans die from air pollution annually.  Direct causes of air pollution related deaths include aggravated [[asthma]], [[bronchitis]], [[emphysema]], lung and heart diseases, and respiratory allergies.  The [[United States Environmental Protection Agency|US EPA]] estimates that a proposed set of changes in [[diesel]] engine technology ''(Tier 2)'' could result in 12,000 fewer ''premature mortalities'', 15,000 fewer [[myocardial infarction|heart attack]]s, 6,000 fewer [[emergency room]] visits by children with asthma, and 8,900 fewer respiratory-related hospital admissions each year in the United States.
  
The worst short term civilian pollution crisis in [[India]] was the [[1984]] [[Bhopal Disaster]]. Leaked industrial vapors from the Union Carbide factory, belonging to Union Carbide, Inc., U.S.A., killed more than 2,000 people outright and injured anywhere from 150,000 to 600,000 others, some 6,000 of whom would later die from their injuries. The [[United Kingdom]] suffered its worst air pollution event when the [[December 4]]th [[Great Smog of 1952]] formed over [[London]]. In six days more than 4,000 died, and 8,000 more died within the following months. An accidental leak of [[anthrax]] spores from a [[biological warfare]] laboratory in the former [[USSR]] in [[1979]] near [[Sverdlovsk]] is believed to have been the cause of hundreds of civilian deaths. The worst single incident of air pollution to occur in the [[United States|United States of America]] occurred in [[Donora, Pennsylvania]] in late October, [[1948]], when 20 people died and over 7,000 were injured.<ref>{{cite book | author=Davis, Devra | title=When Smoke Ran Like Water: Tales of Environmental Deception and the Battle Against Pollution|publisher=Basic Books|year=2002|id=ISBN 0-465-01521-2}}</ref>
+
The worst short term civilian pollution crisis in [[India]] was the 1984 [[Bhopal Disaster]]. Leaked industrial vapors from the Union Carbide factory, belonging to Union Carbide, Inc., U.S.A., killed more than 2,000 people outright and injured anywhere from 150,000 to 600,000 others, some 6,000 of whom would later die from their injuries. The [[United Kingdom]] suffered its worst air pollution event when the December 4th [[Great Smog of 1952]] formed over [[London]]. In six days more than 4,000 died, and 8,000 more died within the following months. An accidental leak of [[anthrax]] spores from a [[biological warfare]] laboratory in the former [[USSR]] in 1979 near [[Sverdlovsk]] is believed to have been the cause of hundreds of civilian deaths. The worst single incident of air pollution to occur in the [[United States|United States of America]] occurred in [[Donora, Pennsylvania]] in late October, 1948, when 20 people died and over 7,000 were injured.<ref>{{cite book | author=Davis, Devra | title=When Smoke Ran Like Water: Tales of Environmental Deception and the Battle Against Pollution|publisher=Basic Books|year=2002|id=ISBN 0-465-01521-2}}</ref>
  
 
The health effects caused by air pollutants may range from subtle biochemical and physiological changes to difficulty in breathing, wheezing, coughing and aggravation of existing respiratory and cardiac conditions.  These effects can result in increased medication use, increased doctor or emergency room visits, more hospital admissions and premature death.  The human health effects of poor air quality are far reaching, but principally affect the body's respiratory system and the cardiovascular system.  Individual reactions to air pollutants depend on the type of pollutant a person is exposed to, the degree of exposure, the individual's health status and genetics.  People who exercise outdoors, for example, on hot, smoggy days increase their exposure to pollutants in the air.
 
The health effects caused by air pollutants may range from subtle biochemical and physiological changes to difficulty in breathing, wheezing, coughing and aggravation of existing respiratory and cardiac conditions.  These effects can result in increased medication use, increased doctor or emergency room visits, more hospital admissions and premature death.  The human health effects of poor air quality are far reaching, but principally affect the body's respiratory system and the cardiovascular system.  Individual reactions to air pollutants depend on the type of pollutant a person is exposed to, the degree of exposure, the individual's health status and genetics.  People who exercise outdoors, for example, on hot, smoggy days increase their exposure to pollutants in the air.
Line 149: Line 149:
 
[[Image:Haze over Lower Fraser Valley, BC.jpg|thumb|right|300px|September 2005 photo of [[haze]]/ air pollution in [[Lower Fraser Valley]] of [[British Columbia]], with an obscured view of [[Mt Baker]], which is just south of the Canada-US border in [[Washington]] State.]]
 
[[Image:Haze over Lower Fraser Valley, BC.jpg|thumb|right|300px|September 2005 photo of [[haze]]/ air pollution in [[Lower Fraser Valley]] of [[British Columbia]], with an obscured view of [[Mt Baker]], which is just south of the Canada-US border in [[Washington]] State.]]
  
In Canada, air quality is typically evaluated against standards set by the [[Canadian Council of Minister for the Environment]] (CCME), an inter-governmental body of federal, provincial and territorial Ministers responsible for the environment. The CCME has set [[Canada Wide Standards]](CWS).<ref>[http://www.ec.gc.ca/CEPARegistry/agreements/cws.cfm Canada-wide Standards]</ref><ref>[http://www.ccme.ca/assets/pdf/pmozone_standard_e.pdf Canada-Wide Standards for Particulate Matter (PM) and Ozone]
+
In Canada, air quality is typically evaluated against standards set by the [[Canadian Council of Minister for the Environment]] (CCME), an inter-governmental body of federal, provincial and territorial Ministers responsible for the environment. The CCME has set [[Canada Wide Standards]](CWS).<ref>[http://www.ec.gc.ca/CEPARegistry/agreements/cws.cfm Canada-wide Standards] CEPA Environmental Registry.</ref><ref>[http://www.ccme.ca/assets/pdf/pmozone_standard_e.pdf Canada-Wide Standards for Particulate Matter (PM) and Ozone] CCME Council of Ministry.</ref> These are:
</ref> These are:
 
  
 
* CWS for '''PM2.5''' = 30 ug/m3 (24 hour averaging time, by year 2010, based on 98th percentile ambient measurement annually, averaged over 3 consecutive years).
 
* CWS for '''PM2.5''' = 30 ug/m3 (24 hour averaging time, by year 2010, based on 98th percentile ambient measurement annually, averaged over 3 consecutive years).
Line 159: Line 158:
  
 
=== European Union ===
 
=== European Union ===
National Emission Ceilings (NEC)  for certain atmospheric pollutants are regulated by Directive 2001/81/EC (NECD).<ref>[http://eur-lex.europa.eu/LexUriServ/site/en/oj/2001/l_309/l_30920011127en00220030.pdf Directive 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on national emission ceilings for certain atmospheric pollutants]</ref> As part of the preparatory work associated with the revision of the NECD, the [[European Commission]] is assisted by the NECPI working group (National Emission Ceilings – Policy Instruments).<ref>{{PDF|[http://ec.europa.eu/environment/air/pdf/necpi_terms_ref_0505.pdf  Terms of Reference, Working Group on the Revision of National Emissions Ceilings and Policy Instruments]|24.4&nbsp;[[Kibibyte|KiB]]<!-- application/pdf, 25003 bytes —>}}</ref>
+
National Emission Ceilings (NEC)  for certain atmospheric pollutants are regulated by Directive 2001/81/EC (NECD).<ref>[http://eur-lex.europa.eu/LexUriServ/site/en/oj/2001/l_309/l_30920011127en00220030.pdf National Emission Ceilings for Certain Atmospheric Pollutants] European Parliament Retrieved September 20, 2007. </ref> As part of the preparatory work associated with the revision of the NECD, the [[European Commission]] is assisted by the NECPI working group (National Emission Ceilings – Policy Instruments).<ref>{{PDF|[http://ec.europa.eu/environment/air/pdf/necpi_terms_ref_0505.pdf  Terms of Reference, Working Group on the Revision of National Emissions Ceilings and Policy Instruments]|24.4&nbsp;[[Kibibyte|KiB]]<!-- application/pdf, 25003 bytes —>}}</ref>
  
 
===United Kingdom===
 
===United Kingdom===
Air quality targets set by the [[Department for Environment, Food and Rural Affairs|UK's Department for Environment, Food and Rural Affairs (DEFRA)]] are mostly aimed at local government representatives responsible for the management of air quality in cities, where air quality management is the most urgent. The UK has established an air quality network where levels of the key air pollutants<ref>[http://www.airquality.co.uk/archive/what_causes.php The Department for Environment, Food & Rural Affairs (DEFRA): Air Pollution]</ref> are published by monitoring centers.<ref> [http://www.airquality.co.uk/archive/laqm/laqm.php LAQM Air Quality Management Areas]</ref> Air quality in [[Oxford]], [[Bath, Somerset|Bath]] and [[London]]<ref>[http://www.londonair.org.uk/london/asp/default.asp London]</ref> is particularly poor. One controversial study<ref>[http://www.guardian.co.uk/uk_news/story/0,,1292524,00.html ''Taking the Oxford air adds up to a 60-a-day habit''] (a newspaper article in [[The Guardian]]</ref> performed by the [[Calor|Calor Gas company]] and published in [[The Guardian|the Guardian newspaper]] compared walking in [[Oxford]] on an average day to smoking over sixty light cigarettes.  
+
Air quality targets set by the [[Department for Environment, Food and Rural Affairs|UK's Department for Environment, Food and Rural Affairs (DEFRA)]] are mostly aimed at local government representatives responsible for the management of air quality in cities, where air quality management is the most urgent. The UK has established an air quality network where levels of the key air pollutants<ref>[http://www.airquality.co.uk/archive/what_causes.php The Department for Environment, Food & Rural Affairs (DEFRA): Air Pollution]</ref> are published by monitoring centers.<ref> [http://www.airquality.co.uk/archive/laqm/laqm.php LAQM Air Quality Management Areas]</ref> Air quality in [[Oxford]], [[Bath, Somerset|Bath]] and [[London]]<ref>[http://www.londonair.org.uk/london/asp/default.asp London]</ref> is particularly poor. One controversial study<ref>[http://www.guardian.co.uk/uk_news/story/0,,1292524,00.html ''Taking the Oxford air adds up to a 60-a-day habit''] (a newspaper article in [[The Guardian]]</ref> performed by the [[Calor|Calor Gas company]] and published in [[The Guardian|the Guardian newspaper]] compared walking in Oxford on an average day to smoking over sixty light cigarettes.  
  
 
More precise comparisons can be collected from the UK Air Quality Archive<ref>[http://www.airquality.co.uk/archive/index.php UK Air Quality Archive]</ref> which allows the user to compare a cities management of pollutants against the national air quality objectives<ref>[http://www.airquality.co.uk/archive/laqm/information.php?info=objectives UK National Air Quality Objectives]</ref> set by DEFRA in 2000.
 
More precise comparisons can be collected from the UK Air Quality Archive<ref>[http://www.airquality.co.uk/archive/index.php UK Air Quality Archive]</ref> which allows the user to compare a cities management of pollutants against the national air quality objectives<ref>[http://www.airquality.co.uk/archive/laqm/information.php?info=objectives UK National Air Quality Objectives]</ref> set by DEFRA in 2000.
Line 206: Line 205:
 
!colspan=2|Most Polluted World Cities by PM<ref>[http://siteresources.worldbank.org/DATASTATISTICS/Resources/table3_13.pdf World Bank Statistics]</ref>
 
!colspan=2|Most Polluted World Cities by PM<ref>[http://siteresources.worldbank.org/DATASTATISTICS/Resources/table3_13.pdf World Bank Statistics]</ref>
 
|-
 
|-
![[Particulate]]<br> matter,<br> μg/m³ (2004)
+
![[Particulate]]<br/> matter,<br/> μg/m³ (2004)
 
!City
 
!City
 
|-
 
|-
Line 259: Line 258:
 
The [[roadway air dispersion model]] was developed starting in the late 1950s and early 1960s in response to requirements of the [[National Environmental Policy Act]] and the [[U.S. Department of Transportation]] (then known as the Federal Highway Administration) to understand impacts of proposed new highways upon air quality, especially in urban areas.  Several research groups were active in this model development, among which were: the Environmental Research and Technology (ERT) group in [[Lexington, Massachusetts]], the ESL Inc. group in [[Sunnyvale, California]] and the [[California Air Resources Board]] group in [[Sacramento, California]].  The research of the ESL group received a boost with a contract award from the [[United States Environmental Protection Agency]] to validate a line source model using [[sulfur hexafluoride]] as a tracer gas.  This program was successful in validating the line source model developed by ESL inc.  Some of the earliest uses of the model were in court cases involving highway air pollution, the [[Arlington, Virginia]] portion of [[Interstate 66]] and the [[New Jersey Turnpike]] widening project through [[East Brunswick, New Jersey]].
 
The [[roadway air dispersion model]] was developed starting in the late 1950s and early 1960s in response to requirements of the [[National Environmental Policy Act]] and the [[U.S. Department of Transportation]] (then known as the Federal Highway Administration) to understand impacts of proposed new highways upon air quality, especially in urban areas.  Several research groups were active in this model development, among which were: the Environmental Research and Technology (ERT) group in [[Lexington, Massachusetts]], the ESL Inc. group in [[Sunnyvale, California]] and the [[California Air Resources Board]] group in [[Sacramento, California]].  The research of the ESL group received a boost with a contract award from the [[United States Environmental Protection Agency]] to validate a line source model using [[sulfur hexafluoride]] as a tracer gas.  This program was successful in validating the line source model developed by ESL inc.  Some of the earliest uses of the model were in court cases involving highway air pollution, the [[Arlington, Virginia]] portion of [[Interstate 66]] and the [[New Jersey Turnpike]] widening project through [[East Brunswick, New Jersey]].
  
Area source models were developed in 1971 through 1974 by the ERT and ESL groups, but addressed a smaller fraction of total air pollution emissions, so that their use and need was not as widespread as the line source model, which enjoyed hundreds of different applications as early as the [[1970s]].  Similarly photochemical models were developed primarily in the 1960s and 1970s, but their use was more specialized and for regional needs, such as understanding smog formation in [[Los Angeles]], [[California]].
+
Area source models were developed in 1971 through 1974 by the ERT and ESL groups, but addressed a smaller fraction of total air pollution emissions, so that their use and need was not as widespread as the line source model, which enjoyed hundreds of different applications as early as the 1970s.  Similarly photochemical models were developed primarily in the 1960s and 1970s, but their use was more specialized and for regional needs, such as understanding smog formation in [[Los Angeles]], [[California]].
  
 
==Greenhouse effect and ocean acidification==
 
==Greenhouse effect and ocean acidification==
 
{{main|Greenhouse effect}}
 
{{main|Greenhouse effect}}
The [[greenhouse effect]] is a phenomenon whereby [[greenhouse gas]]es,  create a condition in the upper [[Earth's atmosphere|atmosphere]] causing a trapping of [[heat]] and leading to increased surface and lower [[troposphere|tropospheric]] temperatures. The effect prevents the planet from severe cooling, and so benefits all living things. It shares this property with many [[IPCC list of greenhouse gases|other gases]], the largest overall [[climate forcing|forcing]] on Earth coming from [[water vapour]].  Other greenhouse gases include [[methane]], [[hydrofluorocarbon]]s, [[perfluorocarbon]]s, [[chlorofluorocarbon]]s, [[NOx]], and [[ozone]].  Many greenhouse gases,  contain [[carbon]], and some of that from [[fossil fuel]]s.
+
The [[greenhouse effect]] is a phenomenon whereby [[greenhouse gas]]es,  create a condition in the upper [[Earth's atmosphere|atmosphere]] causing a trapping of [[heat]] and leading to increased surface and lower [[troposphere|tropospheric]] temperatures. The effect prevents the planet from severe cooling, and so benefits all living things. It shares this property with many [[IPCC list of greenhouse gases|other gases]], the largest overall [[climate forcing|forcing]] on Earth coming from [[water vapor]].  Other greenhouse gases include [[methane]], [[hydrofluorocarbon]]s, [[perfluorocarbon]]s, [[chlorofluorocarbon]]s, [[NOx]], and [[ozone]].  Many greenhouse gases,  contain [[carbon]], and some of that from [[fossil fuel]]s.
  
 
This effect has been understood by scientists for about a century, and technological advancements during this period have helped increase the breadth and depth of data relating to the phenomenon. Currently, scientists are studying the role of changes in composition of greenhouse gases from natural and anthropogenic sources for the effect on [[climate change]].
 
This effect has been understood by scientists for about a century, and technological advancements during this period have helped increase the breadth and depth of data relating to the phenomenon. Currently, scientists are studying the role of changes in composition of greenhouse gases from natural and anthropogenic sources for the effect on [[climate change]].
Line 305: Line 304:
 
{{col-end}}
 
{{col-end}}
  
==References==
+
==Notes==
 
{{reflist}}
 
{{reflist}}
  
Line 319: Line 318:
 
*[http://www.unep.org/pcfv/ UNEP Partnership for Clean Fuels and Vehicles]
 
*[http://www.unep.org/pcfv/ UNEP Partnership for Clean Fuels and Vehicles]
  
=== Air quality modelling ===
+
=== Air quality modeling ===
*[http://www.stuffintheair.com/airqualitymodeling.html Stuff in the Air] Standard air quality modelling procedure for industrial sources.
+
*[http://www.stuffintheair.com/airqualitymodeling.html Stuff in the Air] Standard air quality modeling procedure for industrial sources.
* [http://atmosphericdispersion.wikia.com/ Wiki on Atmospheric Dispersion Modelling]. Addresses the international community of atmospheric dispersion modellers - primarily researchers, but also users of models. Its purpose is to pool experiences gained by dispersion modellers during their work.
+
* [http://atmosphericdispersion.wikia.com/ Wiki on Atmospheric Dispersion Modeling]. Addresses the international community of atmospheric dispersion modelers - primarily researchers, but also users of models. Its purpose is to pool experiences gained by dispersion modelers during their work.
 
*[http://www.air-dispersion.com/formulas.html Air Dispersion Modeling Conversions and Formulas] One of six technical articles devoted to air quality and air pollution dispersion modeling.
 
*[http://www.air-dispersion.com/formulas.html Air Dispersion Modeling Conversions and Formulas] One of six technical articles devoted to air quality and air pollution dispersion modeling.
  
[[Category:Air pollution| ]]
+
[[Category:Physical sciences]]
[[Category:Air dispersion modeling]]
+
[[Category:Atmospheric sciences]]
[[Category:Chemical engineering]]
 
[[Category:Climate forcing agents]]
 
[[Category:Health risks|Air pollution]]
 
[[Category:Environmental threats]]
 
 
 
[[ar:تلوث الهواء]]
 
[[cs:Znečištění ovzduší]]
 
[[da:Luftforurening]]
 
[[de:Luftverschmutzung]]
 
[[es:Contaminación atmosférica]]
 
[[fa:آلودگی هوا]]
 
[[fr:Pollution de l'air]]
 
[[gl:Contaminación atmosférica]]
 
[[hr:Onečišćavanje zraka]]
 
[[id:Pencemaran udara]]
 
[[it:Inquinamento atmosferico]]
 
[[he:זיהום אוויר]]
 
[[nl:Luchtvervuiling]]
 
[[ja:大気汚染]]
 
[[pl:Zanieczyszczenie powietrza]]
 
[[pt:Poluição atmosférica]]
 
[[fi:Ilmansaaste]]
 
[[sv:Luftföroreningar]]
 
[[wa:Mannixhance di l' air]]
 
[[zh:空氣污染]]
 
 
 
  
 
{{credits|Air_pollution|159232306}}
 
{{credits|Air_pollution|159232306}}

Revision as of 22:59, 20 September 2007

 Pollution
Air pollution
Acid rain • Air Pollution Index • Air Quality Index • Atmospheric dispersion modeling • Chlorofluorocarbon • Global dimming • Global warming • Haze • Indoor air quality • Ozone depletion • Particulate • Smog • Roadway air dispersion
Water pollution
Eutrophication • Hypoxia • Marine pollution • Ocean acidification • Oil spill • Ship pollution • Surface runoff • Thermal pollution • Wastewater • Waterborne diseases • Water quality • Water stagnation
Soil contamination
Bioremediation • HerbicidePesticide •Soil Guideline Values (SGVs)
Radioactive contamination
Actinides in the environment • Environmental radioactivity • Fission product • Nuclear fallout • Plutonium in the environment • Radiation poisoning • radium in the environment • Uranium in the environment
Other types of pollution
Invasive species • Light pollution • Noise pollution • Radio spectrum pollution • Visual pollution
Government acts
Clean Air Act • Clean Water Act • Kyoto Protocol • Water Pollution Control Act • Environmental Protection Act 1990
Major organizations
DEFRA • Environmental Protection Agency • Global Atmosphere Watch • Greenpeace • National Ambient Air Quality Standards
Related topics
Natural environment

Air pollution is a chemical, particulate matter, or biological agent that modifies the natural characteristics of the atmosphere. The atmosphere is a complex, dynamic natural gaseous system that is essential to support life on planet Earth. Stratospheric ozone depletion due to air pollution has long been recognized as a threat to human health as well as to the Earth's ecosystems.

Worldwide air pollution is responsible for large numbers of deaths and cases of respiratory disease. While major stationary sources are often identified with air pollution, the greatest source of emissions is actually mobile sources, mainly automobiles. Gases such as carbon dioxide, which contribute to global warming, have recently gained recognition as pollutants by some scientists. Others recognize the gas as being essential to life, and therefore incapable of being classed as a pollutant.

Pollutants

Before desulfurization filters were installed, the emissions from this power plant in New Mexico contained excessive amounts of sulfur dioxide.

There are many substances in the air which may impair the health of plants and animals (including humans), or reduce visibility. These arise both from natural processes and human activity. Substances not naturally found in the air or at greater concentrations or in different locations from usual are referred to as 'pollutants'.

Pollutants can be classified as either primary or secondary. Primary pollutants are substances directly produced by a process, such as ash from a volcanic eruption or the carbon monoxide gas from a motor vehicle exhaust.

Secondary pollutants are not emitted. Rather, they form in the air when primary pollutants react or interact. An important example of a secondary pollutant is ground level ozone - one of the many secondary pollutants that make up photochemical smog.

Note that some pollutants may be both primary and secondary: that is, they are both emitted directly and formed from other primary pollutants.

Major primary pollutants produced by human activity include:

Secondary pollutants include:

  • Particulate matter formed from gaseous primary pollutants and compounds in photochemical smog, such as nitrogen dioxide
  • Ground level ozone (O3)
  • Peroxyacetyl nitrate (PAN)

Minor air pollutants include:

  • A large number of minor hazardous air pollutants listed by the Clean Air Act
  • A variety of persistent organic pollutants, which can attach to particulate matter

Sources of air pollution

Dust storm approaching Stratford, Texas
Using a controlled burn on a field in South Georgia in preparation for spring planting.

Anthropogenic sources (human activity) related to burning different kinds of fuel

  • "Stationary Sources" as smoke stacks of power plants, manufacturing facilities, municipal waste incinerators
  • "Mobile Sources" as motor vehicles, aircraft etc.
  • Combustion-fired power plants
  • Controlled burn practices used in agriculture and forestry management
  • Motor vehicles generating air pollution emissions.
  • Marine vessels, such as container ships or cruise ships, and related port air pollution.
  • Burning wood, fireplaces, stoves, furnaces and incinerators

Other anthropogenic sources

  • Oil refining, power plant operation and industrial activity in general.
  • Chemicals, dust and crop waste burning in farming, (see Dust Bowl).
  • Fumes from paint, hair spray, varnish, aerosol sprays and other solvents.
  • Waste deposition in landfills, which generate methane.
  • Military uses, such as nuclear weapons, toxic gases, germ warfare and rocketry.

Natural sources

Indoor air quality (IAQ)

The lack of ventilation indoors concentrates air pollution where people often spend the majority of their time. Radon (Rn) gas, a carcinogen, is exuded from the Earth in certain locations and trapped inside houses. Researchers have found that radon gas is responsible for over 1,800 deaths annually in the United Kingdom.[citation needed] Building materials including carpeting and plywood emit formaldehyde (H2CO) gas. Paint and solvents give off volatile organic compounds (VOCs) as they dry. Lead paint can degenerate into dust and be inhaled. Intentional air pollution is introduced with the use of air fresheners, incense, and other scented items. Controlled wood fires in stoves and fireplaces can add significant amounts of smoke particulates into the air, inside and out. Indoor pollution fatalities may be caused by using pesticides and other chemical sprays indoors without proper ventilation.

Carbon monoxide (CO) poisoning and fatalities are often caused by faulty vents and chimneys, or by the burning of charcoal indoors. 56,000 Americans died from CO in the period 1979-1988.[citation needed] Chronic carbon monoxide poisoning can result even from poorly adjusted pilot lights. Traps are built into all domestic plumbing to keep sewer gas, hydrogen sulfide, out of interiors. Clothing emits tetrachloroethylene, or other dry cleaning fluids, for days after dry cleaning.

Though its use has now been banned in many countries, the extensive use of asbestos in industrial and domestic environments in the past has left a potentially very dangerous material in many localities. Asbestosis is a chronic inflammatory medical condition affecting the tissue of the lungs. It occurs after long-term, heavy exposure to asbestos from asbestos-containing materials in structures. Sufferers have severe dyspnea (shortness of breath) and are at an increased risk regarding several different types of lung cancer. As clear explanations are not always stressed in non-technical literature, care should be taken to distinguish between several forms of relevant diseases. According to the World Health Organisation (WHO), these may defined as; asbestosis, lung cancer, and mesothelioma (generally a very rare form of cancer, when more widespread it is almost always associated with prolonged exposure to asbestos).

Biological sources of air pollution are also found indoors, as gases and airborne particulates. Pets produce dander, people produce dust from minute skin flakes and decomposed hair, dust mites in bedding, carpeting and furniture produce enzymes and micron-sized fecal droppings, inhabitants emit methane, mold forms in walls and generates mycotoxins and spores, air conditioning systems can incubate Legionnaires' disease and mold, and houseplants, soil and surrounding gardens can produce pollen, dust, and mold. Indoors, the lack of air circulation allows these airborne pollutants to accumulate more than they would otherwise occur in nature.

Health effects

The World Health Organization thinks that 4.6 million people die each year from causes directly attributable to air pollution. Many of these mortalities are attributable to indoor air pollution. Worldwide more deaths per year are linked to air pollution than to automobile accidents. Published in 2005 suggests that 310,000 Europeans die from air pollution annually. Direct causes of air pollution related deaths include aggravated asthma, bronchitis, emphysema, lung and heart diseases, and respiratory allergies. The US EPA estimates that a proposed set of changes in diesel engine technology (Tier 2) could result in 12,000 fewer premature mortalities, 15,000 fewer heart attacks, 6,000 fewer emergency room visits by children with asthma, and 8,900 fewer respiratory-related hospital admissions each year in the United States.

The worst short term civilian pollution crisis in India was the 1984 Bhopal Disaster. Leaked industrial vapors from the Union Carbide factory, belonging to Union Carbide, Inc., U.S.A., killed more than 2,000 people outright and injured anywhere from 150,000 to 600,000 others, some 6,000 of whom would later die from their injuries. The United Kingdom suffered its worst air pollution event when the December 4th Great Smog of 1952 formed over London. In six days more than 4,000 died, and 8,000 more died within the following months. An accidental leak of anthrax spores from a biological warfare laboratory in the former USSR in 1979 near Sverdlovsk is believed to have been the cause of hundreds of civilian deaths. The worst single incident of air pollution to occur in the United States of America occurred in Donora, Pennsylvania in late October, 1948, when 20 people died and over 7,000 were injured.[1]

The health effects caused by air pollutants may range from subtle biochemical and physiological changes to difficulty in breathing, wheezing, coughing and aggravation of existing respiratory and cardiac conditions. These effects can result in increased medication use, increased doctor or emergency room visits, more hospital admissions and premature death. The human health effects of poor air quality are far reaching, but principally affect the body's respiratory system and the cardiovascular system. Individual reactions to air pollutants depend on the type of pollutant a person is exposed to, the degree of exposure, the individual's health status and genetics. People who exercise outdoors, for example, on hot, smoggy days increase their exposure to pollutants in the air.

Reduction efforts

There are many air pollution control technologies and urban planning strategies available to reduce air pollution; however, worldwide costs of addressing the issue are high.[citation needed] Of course, these costs are a small fraction of the economic damage that air pollution will inflict on every nation of earth. Within the last decade the cost of air pollution annually in most of Europe is between 1-3 percent GDP and is at least 5 percent GDP of China.

Many countries have programs to or are debating how to reduce dependence on fossil fuels for energy production and shift toward renewable energy technologies or nuclear power plants.

Efforts to reduce pollution from mobile sources includes primary regulation (many developing countries have permissive regulations), expanding regulation to new sources (such as cruise and transport ships, farm equipment, and small gas-powered equipment such as lawn trimmers, chainsaws, and snowmobiles), increased fuel efficiency (such as through the use of hybrid vehicles), conversion to cleaner fuels (such as bioethanol, biodiesel), or conversion to electric vehicles with renewable energy sources (batteries or clean fuel such as hydrogen being used for transport and storage).

Control devices

The following items are commonly used as pollution control devices by industry or transportation devices. They can either destroy contaminants or remove them from an exhaust stream before it is emitted into the atmosphere.

  • Particulate control
    • Mechanical collectors (dust cyclones, multicyclones)
    • Electrostatic precipitators
    • Baghouses
    • Particulate scrubbers
  • Scrubbers
    • Baffle spray scrubber
    • Cyclonic spray scrubber
    • Ejector venturi scrubber
    • Mechanically aided scrubber
    • Spray tower
    • Wet scrubber
  • NOx control
    • Low NOx burners
    • Selective catalytic reduction (SCR)
    • Selective non-catalytic reduction (SNCR)
    • NOx scrubbers
    • Exhaust gas recirculation
    • Catalytic converter (also for VOC control)
  • VOC abatement
  • Acid Gas/SO2 control
    • Wet scrubbers
    • Dry scrubbers
    • Flue gas desulfurization
  • Mercury control
    • Sorbent Injection Technology
    • Electro-Catalytic Oxidation (ECO)
    • K-Fuel
  • Dioxin and furan control
  • Miscellaneous associated equipment
    • Source capturing systems
    • Continuous emissions monitoring systems (CEMS)

Air quality standards

Smog in Cairo

In general, there are two types of air quality standards. The first class of standards (such as the U.S. National Ambient Air Quality Standards) set maximum atmospheric concentrations for specific pollutants. Environmental agencies enact regulations which are intended to result in attainment of these target levels. The second class (such as the North American Air Quality Index) take the form of a scale with various thresholds, which is used to communicate to the public the relative risk of outdoor activity. The scale may or may not distinguish between different pollutants.

Canada

File:Haze over Lower Fraser Valley, BC.jpg
September 2005 photo of haze/ air pollution in Lower Fraser Valley of British Columbia, with an obscured view of Mt Baker, which is just south of the Canada-US border in Washington State.

In Canada, air quality is typically evaluated against standards set by the Canadian Council of Minister for the Environment (CCME), an inter-governmental body of federal, provincial and territorial Ministers responsible for the environment. The CCME has set Canada Wide Standards(CWS).[2][3] These are:

  • CWS for PM2.5 = 30 ug/m3 (24 hour averaging time, by year 2010, based on 98th percentile ambient measurement annually, averaged over 3 consecutive years).
  • CWS for ozone = 65 ppb (8-hour averaging time, by year 2010, achievement is based on the 4th highest measurement annually, averaged over 3 consecutive years.

Note that there is no consequence in Canada to not achieving these standards. In addition, these only apply to jurisdictions with populations greater than 100,000. Further, provinces and territories may set more stringent standards than those set by the CCME.

European Union

National Emission Ceilings (NEC) for certain atmospheric pollutants are regulated by Directive 2001/81/EC (NECD).[4] As part of the preparatory work associated with the revision of the NECD, the European Commission is assisted by the NECPI working group (National Emission Ceilings – Policy Instruments).[5]

United Kingdom

Air quality targets set by the UK's Department for Environment, Food and Rural Affairs (DEFRA) are mostly aimed at local government representatives responsible for the management of air quality in cities, where air quality management is the most urgent. The UK has established an air quality network where levels of the key air pollutants[6] are published by monitoring centers.[7] Air quality in Oxford, Bath and London[8] is particularly poor. One controversial study[9] performed by the Calor Gas company and published in the Guardian newspaper compared walking in Oxford on an average day to smoking over sixty light cigarettes.

More precise comparisons can be collected from the UK Air Quality Archive[10] which allows the user to compare a cities management of pollutants against the national air quality objectives[11] set by DEFRA in 2000.

Localized peak values are often cited, but average values are also important to human health. The UK National Air Quality Information Archive offers almost real-time monitoring of "current maximum" air pollution measurements for many UK towns and cities.[12] This source offers a wide range of constantly updated data, including:

  • Hourly Mean Ozone (µg/m³)
  • Hourly Mean Nitrogen dioxide (µg/m³)
  • Maximum 15-Minute Mean Sulphur dioxide (µg/m³)
  • 8-Hour Mean Carbon monoxide (mg/m³)
  • 24-Hour Mean PM10 (µg/m³ Grav Equiv)

DEFRA acknowledges that air pollution has a significant effect on health and has produced a simple banding index system[13] is used to create a daily warning system that is issued by the BBC Weather Service to indicate air pollution levels.[14] DEFRA has published guidelines for people suffering from respiratory and heart diseases.[15]

United States

Looking down from the Hollywood Hills, with Griffith Observatory on the hill in the foreground, air pollution is visible in downtown Los Angeles on a late afternoon.

In the 1960s, 70s, and 90s, the United States Congress enacted a series of Clean Air Acts which significantly strengthened regulation of air pollution. Individual U.S. states, some European nations and eventually the European Union followed these initiatives. The Clean Air Act sets numerical limits on the concentrations of a basic group of air pollutants and provide reporting and enforcement mechanisms.

In 1999, the United States EPA replaced the Pollution Standards Index (PSI) with the Air Quality Index (AQI) to incorporate new PM2.5 and Ozone standards.

The effects of these laws have been very positive. In the United States between 1970 and 2006, citizens enjoyed the following reductions in annual pollution emissions:[16]

  • carbon monoxide emissions fell from 197 million tons to 89 million tons
  • nitrogen oxide emissions fell from 27 million tons to 19 million tons
  • sulfur dioxide emissions fell from 31 million tons to 15 million tons
  • particulate emissions fell by 80%
  • lead emissions fell by more than 98%

In an October 2006 letter to EPA, the agency's independent scientific advisors warned that the ozone smog standard “needs to be substantially reduced” and that there is “no scientific justification” for retaining the current, weaker standard. The scientists unanimously recommended a smog threshold of 60 to 70 ppb after they conducted an extensive review of the evidence. [17]

The EPA has proposed, in June 2007, a new threshold of 75 ppb. This falls short of the scientific recommendation, but is an improvement over the current standard.

Polluting industries are lobbying to keep the current (weaker) standards in place. Environmentalists and public health advocates are mobilizing to support compliance with the scientific recommendations.[citation needed]

The National Ambient Air Quality Standards are pollution thresholds which trigger mandatory remediation plans by state and local governments, subject to enforcement by the EPA.

An outpouring of dust layered with man-made sulfates, smog, industrial fumes, carbon grit, and nitrates is crossing the Pacific Ocean on prevailing winds from booming Asian economies in plumes so vast they alter the climate. Almost a third of the air over Los Angeles and San Francisco can be traced directly to Asia. With it comes up to three-quarters of the black carbon particulate pollution that reaches the West Coast. [18]

Affected areas

Most Polluted World Cities by PM[19]
Particulate
matter,
μg/m³ (2004)
City
169 Cairo, Egypt
150 Delhi, India
128 Kolkata, India (Calcutta)
125 Taiyuan, China
123 Chongqing, China
109 Kanpur, India
109 Lucknow, India
104 Jakarta, Indonesia
101 Shenyang, China

Air pollution is usually concentrated in densely populated metropolitan areas, especially in developing countries where environmental regulations are generally relatively lax. However, even populated areas in developed countries attain unhealthy levels of pollution.

File:US-overall-nonattainment-2007-06.png
Counties in the United States that violate National Ambient Air Quality Standards, as of June 2007. Air pollution is a health concern even in developed countries like the U.S.

Atmospheric dispersion modeling

The basic technology for analyzing air pollution is through the use of a variety of mathematical models for predicting the transport of air pollutants in the lower atmosphere. The principal methodologies are:

  • Point source dispersion, used for industrial sources.
  • Line source dispersion, used for airport and roadway air dispersion modeling
  • Area source dispersion, used for forest fires or duststorms
  • Photochemical models, used to analyze reactive pollutants that form smog
Visualization of a buoyant Gaussian air pollution dispersion plume as used in many atmospheric dispersion models

The point source problem is the best understood, since it involves simpler mathematics and has been studied for a long period of time, dating back to about the year 1900. It uses a Gaussian dispersion model for buoyant pollution plumes to forecast the air pollution isopleths, with consideration given to wind velocity, stack height, emission rate and stability class (a measure of atmospheric turbulence).[20][21] This model has been extensively validated and calibrated with experimental data for all sorts of atmospheric conditions.

The roadway air dispersion model was developed starting in the late 1950s and early 1960s in response to requirements of the National Environmental Policy Act and the U.S. Department of Transportation (then known as the Federal Highway Administration) to understand impacts of proposed new highways upon air quality, especially in urban areas. Several research groups were active in this model development, among which were: the Environmental Research and Technology (ERT) group in Lexington, Massachusetts, the ESL Inc. group in Sunnyvale, California and the California Air Resources Board group in Sacramento, California. The research of the ESL group received a boost with a contract award from the United States Environmental Protection Agency to validate a line source model using sulfur hexafluoride as a tracer gas. This program was successful in validating the line source model developed by ESL inc. Some of the earliest uses of the model were in court cases involving highway air pollution, the Arlington, Virginia portion of Interstate 66 and the New Jersey Turnpike widening project through East Brunswick, New Jersey.

Area source models were developed in 1971 through 1974 by the ERT and ESL groups, but addressed a smaller fraction of total air pollution emissions, so that their use and need was not as widespread as the line source model, which enjoyed hundreds of different applications as early as the 1970s. Similarly photochemical models were developed primarily in the 1960s and 1970s, but their use was more specialized and for regional needs, such as understanding smog formation in Los Angeles, California.

Greenhouse effect and ocean acidification

Main article: Greenhouse effect

The greenhouse effect is a phenomenon whereby greenhouse gases, create a condition in the upper atmosphere causing a trapping of heat and leading to increased surface and lower tropospheric temperatures. The effect prevents the planet from severe cooling, and so benefits all living things. It shares this property with many other gases, the largest overall forcing on Earth coming from water vapor. Other greenhouse gases include methane, hydrofluorocarbons, perfluorocarbons, chlorofluorocarbons, NOx, and ozone. Many greenhouse gases, contain carbon, and some of that from fossil fuels.

This effect has been understood by scientists for about a century, and technological advancements during this period have helped increase the breadth and depth of data relating to the phenomenon. Currently, scientists are studying the role of changes in composition of greenhouse gases from natural and anthropogenic sources for the effect on climate change.

A number of studies have also investigated the potential for long-term rising levels of atmospheric carbon dioxide to cause slight increases in the acidity of ocean waters and the possible effects of this on marine ecosystems. However, carbonic acid is a very weak acid, and is utilized by marine organisms during photosynthesis.

See also

  • Air pollution dispersion modeling books
  • Air pollution in British Columbia
  • Air Quality Index
  • Air stagnation
  • AP 42 Compilation of Air Pollutant Emission Factors
  • Asian brown cloud
  • Atmospheric chemistry
  • Atmospheric dispersion modeling
  • Building biology
  • Compilation of atmospheric dispersion models
  • Emissions & Generation Resource Integrated Database (eGRID)
  • Emission standard
  • Environmental agreement
  • Flue gas emissions from fossil fuel combustion

  • Flue gas desulfurization
  • Global Atmosphere Watch
  • Global dimming
  • Global warming
  • Greenhouse effect
  • International Agency for Research on Cancer
  • Kyoto Protocol
  • List of natural disasters by death toll#Smog
  • National Ambient Air Quality Standards (USA EPA)
  • Particulate
  • Polluter pays principle
  • Smog and Haze
  • Spare the Air program (California)

Notes

External links

Commons
Wikimedia Commons has media related to::

Air quality science and general information

Air quality modeling

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.