Difference between revisions of "Aging" - New World Encyclopedia

From New World Encyclopedia
Line 20: Line 20:
  
 
[[File:Alzheimer's disease brain comparison.jpg|thumb|400px|Comparison of a normal aged brain (left) and a brain affected by [[Alzheimer's disease]] (right).]]
 
[[File:Alzheimer's disease brain comparison.jpg|thumb|400px|Comparison of a normal aged brain (left) and a brain affected by [[Alzheimer's disease]] (right).]]
 +
Ageing increases the [[risk factor|risk]] of [[Aging-associated diseases|human diseases]]:<ref>{{Cite journal|last=Ahmed|first=Abu Shufian Ishtiaq|last2=Sheng|first2=Matilda HC|last3=Wasnik|first3=Samiksha|last4=Baylink|first4=David J|last5=Lau|first5=Kin-Hing William|date=2017|title=Effect of aging on stem cells|url=http://dx.doi.org/10.5493/wjem.v7.i1.1|journal=World Journal of Experimental Medicine|volume=7|issue=1|pages=1|doi=10.5493/wjem.v7.i1.1|issn=2220-315X|doi-access=free}}</ref> of the roughly 150,000 people who die each day across the globe, about two-thirds die from age-related causes.<ref name="de Grey 2007" />
  
 
A number of characteristic ageing symptoms are experienced by a majority or by a significant proportion of humans during their lifetimes.
 
A number of characteristic ageing symptoms are experienced by a majority or by a significant proportion of humans during their lifetimes.

Revision as of 16:43, 13 August 2021

Currently working onJennifer Tanabe May 2021.

95-year-old woman holding a five-month-old boy

Aging or ageing is the process of becoming older. The term refers especially to humans, many other animals, and fungi. In the broader sense, aging can refer to single cells within an organism which have ceased dividing (cellular senescence) or to the population of a species (population ageing).[1]

In humans, aging represents the accumulation of changes in a human being over time[2] and can encompass physical, psychological, and social changes. Reaction time, for example, may slow with age, while memories and general knowledge typically increase.


Definitions

Mortality can be used to define biological ageing, which refers to an organism's increased rate of death as it progresses throughout its lifecycle and increases its chronological age.[3] Another possible way to define ageing is through functional definitions, of which there are two main types[3] The first describes how varying types of deteriorative changes that accumulate in the life of a post-maturation organism can leave it vulnerable, leading to a decreased ability of the organism to survive. The second is a senescence-based definition; this describes age-related changes in an organism that increase its mortality rate over time by negatively affecting its vitality and functional performance.[3]

An important distinction to make is that biological aging is not the same thing as the accumulation of diseases related to old age; disease is a blanket term used to describe a process within an organism that causes a decrease in its functional ability.[3] Aging is the natural and inevitable biological process that all animal life, including human beings go through from conception through birth to death. While death by other external causes, such as disease, accident, predation, and so forth, is common, it would occur naturally due to aging if such causes were absent.

Effects

Enlarged ears and noses of old humans are sometimes blamed on continual cartilage growth, but the cause is more probably gravity.[4]
Age dynamics of the body mass (1, 2) and mass normalized to height (3, 4) of men (1, 3) and women (2, 4).[5]
Comparison of a normal aged brain (left) and a brain affected by Alzheimer's disease (right).

Ageing increases the risk of human diseases:[6] of the roughly 150,000 people who die each day across the globe, about two-thirds die from age-related causes.[7]

A number of characteristic ageing symptoms are experienced by a majority or by a significant proportion of humans during their lifetimes.

  • Teenagers lose the young child's ability to hear high-frequency sounds above 20 kHz.[8]
  • Wrinkles develop mainly due to photoageing, particularly affecting sun-exposed areas (face).[9]
  • After peaking in the mid-20s, female fertility declines.[10]
  • After age 30 the mass of human body is decreased until 70 years and then shows damping oscillations.[5]
  • Muscles have reduced capacity of responding to exercise or injury and loss of muscle mass and strength (sarcopenia) is common.[11] VO2 max and maximum heart rate decline.[12]
  • Hand strength and mobility are decreased during the aging process. These things include, "hand and finger strength and ability to control submaximal pinch force and maintain a steady precision pinch posture, manual speed, and hand sensation"[13]
  • People over 35 years of age are at increasing risk for losing strength in the ciliary muscle of the eyes which leads to difficulty focusing on close objects, or presbyopia.[14][15] Most people experience presbyopia by age 45–50.[16] The cause is lens hardening by decreasing levels of alpha-crystallin, a process which may be sped up by higher temperatures.[16][17]
  • Around age 50, hair turns grey.[18] Pattern hair loss by the age of 50 affects about 30–50% of males[19] and a quarter of females.[20]
  • Menopause typically occurs between 44 and 58 years of age.[21]
  • In the 60–64 age cohort, the incidence of osteoarthritis rises to 53%. Only 20% however report disabling osteoarthritis at this age.[22]
  • Almost half of people older than 75 have hearing loss (presbycusis) inhibiting spoken communication.[23] Many vertebrates such as fish, birds and amphibians do not suffer presbycusis in old age as they are able to regenerate their cochlear sensory cells, whereas mammals including humans have genetically lost this ability.[24]
  • By age 80, more than half of all Americans either have a cataract or have had cataract surgery.[25]
  • Frailty, a syndrome of decreased strength, physical activity, physical performance and energy, affects 25% of those over 85.[26][27]
  • Atherosclerosis is classified as an ageing disease.[28] It leads to cardiovascular disease (for example stroke and heart attack)[29] which globally is the most common cause of death.[30] Vessel ageing causes vascular remodeling and loss of arterial elasticity and as a result causes the stiffness of the vasculature.[28]
  • Recent evidence suggests that age-related risk of death plateaus after age 105.[31] The maximum human lifespan is suggested to be 115 years.[32][33] The oldest reliably recorded human was Jeanne Calment who died in 1997 at 122.

Dementia becomes more common with age.[34] About 3% of people between the ages of 65 and 74, 19% between 75 and 84, and nearly half of those over 85 years of age have dementia.[35] The spectrum ranges from mild cognitive impairment to the neurodegenerative diseases of Alzheimer's disease, cerebrovascular disease, Parkinson's disease and Lou Gehrig's disease. Furthermore, many types of memory decline with ageing, but not semantic memory or general knowledge such as vocabulary definitions, which typically increases or remains steady until late adulthood[36] (see Ageing brain). Intelligence declines with age, though the rate varies depending on the type and may in fact remain steady throughout most of the lifespan, dropping suddenly only as people near the end of their lives. Individual variations in rate of cognitive decline may therefore be explained in terms of people having different lengths of life.[37] There are changes to the brain: after 20 years of age there is a 10% reduction each decade in the total length of the brain's myelinated axons.[38][39]

Age can result in visual impairment, whereby non-verbal communication is reduced,[40] which can lead to isolation and possible depression. Older adults, however, may not suffer depression as much as younger adults, and were paradoxically found to have improved mood despite declining physical health.[41] Macular degeneration causes vision loss and increases with age, affecting nearly 12% of those above the age of 80.[42] This degeneration is caused by systemic changes in the circulation of waste products and by growth of abnormal vessels around the retina.[43]

Other visual diseases that often appear with age would be cataracts and glaucoma. A cataract occurs when the lens of the eye becomes cloudy making vision blurry and eventually causing blindness if untreated.[44] They develop over time and are seen most often with those that are older. Cataracts can be treated through surgery. Glaucoma is another common visual disease that appears in older adults. Glaucoma is caused by damage to the optic nerve causing vision loss.[45] Glaucoma usually develops over time but there are variations to glaucoma, and some have sudden onset. There are a few procedures for glaucoma but there is no cure or fix for the damage once it has happened. Prevention is the best measure in the case of glaucoma.[46]

A distinction can be made between "proximal ageing" (age-based effects that come about because of factors in the recent past) and "distal ageing" (age-based differences that can be traced to a cause in a person's early life, such as childhood poliomyelitis).[37]

Ageing is among the greatest known risk factors for most human diseases.[47] Of the roughly 150,000 people who die each day across the globe, about two-thirds—100,000 per day—die from age-related causes. In industrialized nations, the proportion is higher, reaching 90%.[7][48][49]

Biological basis

The causes of ageing are uncertain; current theories are assigned to the damage concept, whereby the accumulation of damage (such as DNA oxidation) may cause biological systems to fail, or to the programmed ageing concept, whereby problems with the internal processes (epigenomic maintenance such as DNA methylation[50]) may cause ageing. Programmed ageing should not be confused with programmed cell death (apoptosis). Additionally, there can be other reasons, which can speed up the rate of ageing in organisms including human beings like obesity[51][52] and compromised immune system.

Researchers are only just beginning to understand the biological basis of ageing even in relatively simple and short-lived organisms such as yeast.[53] Less still is known of mammalian ageing, in part due to the much longer lives of even small mammals such as the mouse (around 3 years). A model organism for studying of ageing is the nematode C. elegans. Thanks to its short lifespan of 2–3 weeks, our ability to easily perform genetic manipulations or to suppress gene activity with RNA interference, or other factors.[54] Most known mutations and RNA interference targets that extend lifespan were first discovered in C. elegans.[55]

The factors proposed to influence biological ageing[56] fall into two main categories, programmed and damage-related. Programmed factors follow a biological timetable, perhaps one that might be a continuation of the one that regulates childhood growth and development. This regulation would depend on changes in gene expression that affect the systems responsible for maintenance, repair and defense responses. Damage-related factors include internal and environmental assaults to living organisms that induce cumulative damage at various levels.[57] A third, novel, concept is that ageing is mediated by vicious cycles.[47]

In a detailed review, Lopez-Otin and colleagues (2013), who discuss ageing through the lens of the damage theory, propose nine metabolic "hallmarks" of ageing in various organisms but especially mammals:[58]

  • genomic instability (mutations accumulated in nuclear DNA, in mtDNA, and in the nuclear lamina)
  • telomere attrition (the authors note that artificial telomerase confers non-cancerous immortality to otherwise mortal cells)
  • epigenetic alterations (including DNA methylation patterns, post-translational modification of histones, and chromatin remodelling)
  • loss of proteostasis (protein folding and proteolysis)
  • deregulated nutrient sensing (relating to the Growth hormone/Insulin-like growth factor 1 signalling pathway, which is the most conserved ageing-controlling pathway in evolution and among its targets are the FOXO3/Sirtuin transcription factors and the mTOR complexes, probably responsive to caloric restriction)
  • mitochondrial dysfunction (the authors point out however that a causal link between ageing and increased mitochondrial production of reactive oxygen species is no longer supported by recent research)
  • cellular senescence (accumulation of no longer dividing cells in certain tissues, a process induced especially by p16INK4a/Rb and p19ARF/p53 to stop cancerous cells from proliferating)
  • stem cell exhaustion (in the authors' view caused by damage factors such as those listed above)
  • altered intercellular communication (encompassing especially inflammation but possibly also other intercellular interactions)

There are three main metabolic pathways which can influence the rate of ageing:

  • the FOXO3/Sirtuin pathway, probably responsive to caloric restriction
  • the Growth hormone/Insulin-like growth factor 1 signalling pathway
  • the activity levels of the electron transport chain in mitochondria[59] and (in plants) in chloroplasts.

It is likely that most of these pathways affect ageing separately, because targeting them simultaneously leads to additive increases in lifespan.[60]

Programmed factors

The rate of ageing varies substantially across different species, and this, to a large extent, is genetically based. For example, numerous perennial plants ranging from strawberries and potatoes to willow trees typically produce clones of themselves by vegetative reproduction and are thus potentially immortal, while annual plants such as wheat and watermelons die each year and reproduce by sexual reproduction. In 2008 it was discovered that inactivation of only two genes in the annual plant Arabidopsis thaliana leads to its conversion into a potentially immortal perennial plant.[61] The oldest animals known so far are 15,000-year-old Antarctic sponges,[62] which can reproduce both sexually and clonally.

Clonal immortality apart, there are certain species whose individual lifespans stand out among Earth's life-forms, including the bristlecone pine at 5062 years[63] or 5067 years,[62] invertebrates like the hard clam (known as quahog in New England) at 508 years,[64] the Greenland shark at 400 years,[65] various deep-sea tube worms at over 300 years,[66] fish like the sturgeon and the rockfish, and the sea anemone[67] and lobster.[68][69] Such organisms are sometimes said to exhibit negligible senescence.[70] The genetic aspect has also been demonstrated in studies of human centenarians.

  • Evolution of ageing: Many have argued that life span, like other phenotypes, is selected. Traits that benefit early survival and reproduction will be selected for even if they contribute to an earlier death. Such a genetic effect is called the antagonistic pleiotropy effect when referring to a gene (pleiotropy signifying the gene has a double function – enabling reproduction at a young age but costing the organism life expectancy in old age) and is called the disposable soma effect when referring to an entire genetic programme (the organism diverting limited resources from maintenance to reproduction).[71] The biological mechanisms which regulate lifespan evolved several hundred million years ago.[55]
    • Some evidence is provided by oxygen-deprived bacterial cultures.[72]
    • The theory would explain why the autosomal dominant disease, Huntington's disease, can persist even though it is inexorably lethal. Also, it has been suggested that some of the genetic variants that increase fertility in the young increase cancer risk in the old. Such variants occur in genes p53[73] and BRCA1.[74]
    • The reproductive-cell cycle theory argues that ageing is regulated specifically by reproductive hormones that act in an antagonistic pleiotropic manner via cell cycle signalling, promoting growth and development early in life to achieve reproduction, but becoming dysregulated later in life, driving senescence (dyosis) in a futile attempt to maintain reproductive ability.[2][75] The endocrine dyscrasia that follows the loss of follicles with menopause, and the loss of Leydig and Sertoli cells during andropause, drive aberrant cell cycle signalling that leads to cell death and dysfunction, tissue dysfunction (disease) and ultimately death. Moreover, the hormones that regulate reproduction also regulate cellular metabolism, explaining the increases in fat deposition during pregnancy through to the deposition of centralised adiposity with the dysregulation of the HPG axis following menopause and during andropause (Atwood and Bowen, 2004). This theory, which introduced a new definition of ageing, has facilitated the conceptualisation of why and how ageing occurs at the evolutionary, physiological and molecular levels.[2]
  • Autoimmunity: The idea that ageing results from an increase in autoantibodies that attack the body's tissues. A number of diseases associated with ageing, such as atrophic gastritis and Hashimoto's thyroiditis, are probably autoimmune in this way. However, while inflammation is very much evident in old mammals, even completely immunodeficient mice raised in pathogen-free laboratory conditions still experience senescence.[citation needed]
An elderly Somali woman
  • The cellular balance between energy generation and consumption (energy homeostasis) requires tight regulation during ageing. In 2011, it was demonstrated that acetylation levels of AMP-activated protein kinase change with age in yeast and that preventing this change slows yeast ageing.[76]
  • Skin ageing is caused in part by TGF-β, which reduces the subcutaneous fat that gives skin a pleasant appearance and texture. TGF-β does this by blocking the conversion of dermal fibroblasts into fat cells; with fewer fat cells underneath to provide support, the skin becomes saggy and wrinkled. Subcutaneous fat also produces cathelicidin, which is a peptide that fights bacterial infections.[77][78]

Damage-related factors

  • DNA damage theory of ageing: DNA damage is thought to be the common basis of both cancer and ageing, and it has been argued that intrinsic causes of DNA damage are the most important drivers of ageing.[79][80][81] Genetic damage (aberrant structural alterations of the DNA), mutations (changes in the DNA sequence), and epimutations (methylation of gene promoter regions or alterations of the DNA scaffolding which regulate gene expression), can cause abnormal gene expression. DNA damage causes the cells to stop dividing or induces apoptosis, often affecting stem cell pools and hence hindering regeneration. However, lifelong studies of mice suggest that most mutations happen during embryonic and childhood development, when cells divide often, as each cell division is a chance for errors in DNA replication.[82]
  • Genetic instability: Dogs annually lose approximately 3.3% of the DNA in their heart muscle cells while humans lose approximately 0.6% of their heart muscle DNA each year. These numbers are close to the ratio of the maximum longevities of the two species (120 years vs. 20 years, a 6/1 ratio). The comparative percentage is also similar between the dog and human for yearly DNA loss in the brain and lymphocytes. As stated by lead author, Bernard L. Strehler, "... genetic damage (particularly gene loss) is almost certainly (or probably the) central cause of ageing."[83]
  • Accumulation of waste:
    • A buildup of waste products in cells presumably interferes with metabolism. For example, a waste product called lipofuscin is formed by a complex reaction in cells that binds fat to proteins. This waste accumulates in the cells as small granules, which increase in size as a person ages.[84]
    • The hallmark of ageing yeast cells appears to be overproduction of certain proteins.[53]
    • Autophagy induction can enhance clearance of toxic intracellular waste associated with neurodegenerative diseases and has been comprehensively demonstrated to improve lifespan in yeast, worms, flies, rodents and primates. The situation, however, has been complicated by the identification that autophagy up-regulation can also occur during ageing.[85] Autophagy is enhanced in obese mice by caloric restriction, exercise, and a low fat diet (but in these mice is evidently not related with the activation of AMP-activated protein kinase, see above).[86]
  • Wear-and-tear theory: The very general idea that changes associated with ageing are the result of chance damage that accumulates over time.[57]
  • Accumulation of errors: The idea that ageing results from chance events that escape proof reading mechanisms, which gradually damages the genetic code.
  • Heterochromatin loss, model of ageing.[87][88][89]
  • Transposable elements in genome disintegration as the primary role in the mechanism of ageing.[90][91][92]
  • Cross-linkage: The idea that ageing results from accumulation of cross-linked compounds that interfere with normal cell function.[93][94]
  • Studies of mtDNA mutator mice have shown that increased levels of somatic mtDNA mutations directly can cause a variety of ageing phenotypes. The authors propose that mtDNA mutations lead to respiratory-chain-deficient cells and thence to apoptosis and cell loss. They cast doubt experimentally however on the common assumption that mitochondrial mutations and dysfunction lead to increased generation of reactive oxygen species (ROS).[95]
  • Free-radical theory: Damage by free radicals, or more generally reactive oxygen species or oxidative stress, create damage that may give rise to the symptoms we recognise as ageing.[93][96] Michael Ristow's group has provided evidence that the effect of calorie restriction may be due to increased formation of free radicals within the mitochondria, causing a secondary induction of increased antioxidant defence capacity.[97]
  • Mitochondrial theory of ageing: free radicals produced by mitochondrial activity damage cellular components, leading to ageing.
  • DNA oxidation and caloric restriction: Caloric restriction reduces 8-OH-dG DNA damage in organs of ageing rats and mice.[98][99] Thus, reduction of oxidative DNA damage is associated with a slower rate of ageing and increased lifespan.[100] In a 2021 review article, Vijg stated that “Based on an abundance of evidence, DNA damage is now considered as the single most important driver of the degenerative processes that collectively cause aging.”[101]

Prevention and delay

Lifestyle

Caloric restriction substantially affects lifespan in many animals, including the ability to delay or prevent many age-related diseases.[102] Typically, this involves caloric intake of 60–70% of what an ad libitum animal would consume, while still maintaining proper nutrient intake.[102] In rodents, this has been shown to increase lifespan by up to 50%;[103] similar effects occur for yeast and Drosophila.[102] No lifespan data exist for humans on a calorie-restricted diet,[104] but several reports support protection from age-related diseases.[105][106] Two major ongoing studies on rhesus monkeys initially revealed disparate results; while one study, by the University of Wisconsin, showed that caloric restriction does extend lifespan,[107] the second study, by the National Institute on Aging (NIA), found no effects of caloric restriction on longevity.[108] Both studies nevertheless showed improvement in a number of health parameters. Notwithstanding the similarly low calorie intake, the diet composition differed between the two studies (notably a high sucrose content in the Wisconsin study), and the monkeys have different origins (India, China), initially suggesting that genetics and dietary composition, not merely a decrease in calories, are factors in longevity.[104] However, in a comparative analysis in 2014, the Wisconsin researchers found that the allegedly non-starved NIA control monkeys in fact are moderately underweight when compared with other monkey populations, and argued this was due to the NIA's apportioned feeding protocol in contrast to Wisconsin's truly unrestricted ad libitum feeding protocol.[109] They conclude that moderate calorie restriction rather than extreme calorie restriction is sufficient to produce the observed health and longevity benefits in the studied rhesus monkeys.[110]

In his book How and Why We Age, Hayflick says that caloric restriction may not be effective in humans, citing data from the Baltimore Longitudinal Study of Aging which shows that being thin does not favour longevity.Template:Request quotation[111] However, there may be confounders, e.g. smoking reduces both appetite and lifespan. Similarly, it is sometimes claimed that moderate obesity in later life may improve survival, but newer research has identified confounding factors such as weight loss due to terminal disease. Once these factors are accounted for, the optimal body weight above age 65 corresponds to a leaner body mass index of 23 to 27.[112]

Alternatively, the benefits of dietary restriction can also be found by changing the macro nutrient profile to reduce protein intake without any changes to calorie level, resulting in similar increases in longevity.[113][114] Dietary protein restriction not only inhibits mTOR activity but also IGF-1, two mechanisms implicated in ageing.[115] Specifically, reducing leucine intake is sufficient to inhibit mTOR activity, achievable through reducing animal food consumption.[116][117]

The Mediterranean diet is credited with lowering the risk of heart disease and early death.[118][119] The major contributors to mortality risk reduction appear to be a higher consumption of vegetables, fish, fruits, nuts and monounsaturated fatty acids, i.e., olive oil.[120]

The amount of sleep has an impact on mortality. People who live the longest report sleeping for six to seven hours each night.[121][122] Lack of sleep (<5 hours) more than doubles the risk of death from cardiovascular disease, but too much sleep (>9 hours) is associated with a doubling of the risk of death, though not primarily from cardiovascular disease.[123] Sleeping more than 7 to 8 hours per day has been consistently associated with increased mortality, though the cause is probably other factors such as depression and socioeconomic status, which would correlate statistically.[124] Sleep monitoring of hunter-gatherer tribes from Africa and from South America has shown similar sleep patterns across continents: their average sleeping duration is 6.4 hours (with a summer/winter difference of 1 hour), afternoon naps (siestas) are uncommon, and insomnia is very rare (tenfold less than in industrial societies).[125]

Physical exercise may increase life expectancy.[126] People who participate in moderate to high levels of physical exercise have a lower mortality rate compared to individuals who are not physically active.[127] Moderate levels of exercise have been correlated with preventing ageing and improving quality of life by reducing inflammatory potential.[128] The majority of the benefits from exercise are achieved with around 3500 metabolic equivalent (MET) minutes per week.[129] For example, climbing stairs 10 minutes, vacuuming 15 minutes, gardening 20 minutes, running 20 minutes, and walking or bicycling for 25 minutes on a daily basis would together achieve about 3000 MET minutes a week.[129] Other research seems to suggest a relationship between regular physical exercise and cognitive functioning in old age.[130]

Avoidance of chronic stress (as opposed to acute stress) is associated with a slower loss of telomeres in most but not all studies,[131][132] and with decreased cortisol levels. A chronically high cortisol level compromises the immune system, causes cardiac damage/arterosclerosis and is associated with facial ageing, and the latter in turn is a marker for increased morbidity and mortality.[133][134] A meta-analysis shows that loneliness carries a higher mortality risk than smoking.[135] Stress can be countered by social connection, spirituality, and (for men more clearly than for women) married life, all of which are associated with longevity.[136][137][138][139]

Medical intervention

The following drugs and interventions have been shown to slow or reverse the biological effects of ageing in animal models, but none has yet been proven to do so in humans.

Evidence in both animals and humans suggests that resveratrol may be a caloric restriction mimetic.[140]

As of 2015, metformin was under study for its potential effect on slowing ageing in the worm C.elegans and the cricket.[141] Its effect on otherwise healthy humans is unknown.[141]

Rapamycin was first shown to extend lifespan in eukaryotes in 2006 by Powers et al. who showed a dose-responsive effect of rapamycin on lifespan extension in yeast cells.[142] In a 2009 study, the lifespans of mice fed rapamycin were increased between 28 and 38% from the beginning of treatment, or 9 to 14% in total increased maximum lifespan. Of particular note, the treatment began in mice aged 20 months, the equivalent of 60 human years.[143] Rapamycin has subsequently been shown to extend mouse lifespan in several separate experiments,[144][145] and is now being tested for this purpose in nonhuman primates (the marmoset monkey).[146]

Cancer geneticist Ronald A. DePinho and his colleagues published research on mice where telomerase activity was first genetically removed. Then, after the mice had prematurely aged, they restored telomerase activity by reactivating the telomerase gene. As a result, the mice were rejuvenated: Shrivelled testes grew back to normal and the animals regained their fertility. Other organs, such as the spleen, liver, intestines and brain, recuperated from their degenerated state. "[The finding] offers the possibility that normal human ageing could be slowed by reawakening the enzyme in cells where it has stopped working" says Ronald DePinho. However, activating telomerase in humans could potentially encourage the growth of tumours.[147]

Most known genetic interventions in C. elegans increase lifespan by 1.5 to 2.5-fold. As of 2009, the record for lifespan extension in C. elegans is a single-gene mutation which increases adult survival by tenfold.[55] The strong conservation of some of the mechanisms of ageing discovered in model organisms imply that they may be useful in the enhancement of human survival. However, the benefits may not be proportional; longevity gains are typically greater in C. elegans than fruit flies, and greater in fruit flies than in mammals. One explanation for this is that mammals, being much longer-lived, already have many traits which promote lifespan.[55]

Society and culture

An elderly man

Different cultures express age in different ways. The age of an adult human is commonly measured in whole years since the day of birth. Arbitrary divisions set to mark periods of life may include: juvenile (via infancy, childhood, preadolescence, adolescence), early adulthood, middle adulthood, and late adulthood. More casual terms may include "teenagers", "tweens", "twentysomething", "thirtysomething", etc. as well as "denarian", "vicenarian", "tricenarian", "quadragenarian", etc.

Most legal systems define a specific age for when an individual is allowed or obliged to do particular activities. These age specifications include voting age, drinking age, age of consent, age of majority, age of criminal responsibility, marriageable age, age of candidacy, and mandatory retirement age. Admission to a movie for instance, may depend on age according to a motion picture rating system. A bus fare might be discounted for the young or old. Each nation, government and non-governmental organisation has different ways of classifying age. In other words, chronological ageing may be distinguished from "social ageing" (cultural age-expectations of how people should act as they grow older) and "biological ageing" (an organism's physical state as it ages).[148]

Ageism cost the United States $63 billion in one year according to a Yale School of Public Health study.[149] In a UNFPA report about ageing in the 21st century, it highlighted the need to "Develop a new rights-based culture of ageing and a change of mindset and societal attitudes towards ageing and older persons, from welfare recipients to active, contributing members of society".[150] UNFPA said that this "requires, among others, working towards the development of international human rights instruments and their translation into national laws and regulations and affirmative measures that challenge age discrimination and recognise older people as autonomous subjects".[150] Older people's music participation contributes to the maintenance of interpersonal relationships and promoting successful ageing.[151] At the same time, older persons can make contributions to society including caregiving and volunteering. For example, "A study of Bolivian migrants who [had] moved to Spain found that 69% left their children at home, usually with grandparents. In rural China, grandparents care for 38% of children aged under five whose parents have gone to work in cities."[150]

Economics

Population ageing is the increase in the number and proportion of older people in society. Population ageing has three possible causes: migration, longer life expectancy (decreased death rate) and decreased birth rate. Ageing has a significant impact on society. Young people tend to have fewer legal privileges (if they are below the age of majority), they are more likely to push for political and social change, to develop and adopt new technologies, and to need education. Older people have different requirements from society and government, and frequently have differing values as well, such as for property and pension rights.[152]

In the 21st century, one of the most significant population trends is ageing.[153] Currently, over 11% of the world's current population are people aged 60 and older and the United Nations Population Fund (UNFPA) estimates that by 2050 that number will rise to approximately 22%.[150] Ageing has occurred due to development which has enabled better nutrition, sanitation, health care, education and economic well-being. Consequently, fertility rates have continued to decline and life expectancy has risen. Life expectancy at birth is over 80 now in 33 countries. Ageing is a "global phenomenon", that is occurring fastest in developing countries, including those with large youth populations, and poses social and economic challenges to the work which can be overcome with "the right set of policies to equip individuals, families and societies to address these challenges and to reap its benefits".[154]

As life expectancy rises and birth rates decline in developed countries, the median age rises accordingly. According to the United Nations, this process is taking place in nearly every country in the world.[155] A rising median age can have significant social and economic implications, as the workforce gets progressively older and the number of old workers and retirees grows relative to the number of young workers. Older people generally incur more health-related costs than do younger people in the workplace and can also cost more in worker's compensation and pension liabilities.[156] In most developed countries an older workforce is somewhat inevitable. In the United States for instance, the Bureau of Labor Statistics estimates that one in four American workers will be 55 or older by 2020.[156]

Among the most urgent concerns of older persons worldwide is income security. This poses challenges for governments with ageing populations to ensure investments in pension systems continues in order to provide economic independence and reduce poverty in old age. These challenges vary for developing and developed countries. UNFPA stated that, "Sustainability of these systems is of particular concern, particularly in developed countries, while social protection and old-age pension coverage remain a challenge for developing countries, where a large proportion of the labour force is found in the informal sector."[150]

The global economic crisis has increased financial pressure to ensure economic security and access to health care in old age. In order to elevate this pressure "social protection floors must be implemented in order to guarantee income security and access to essential health and social services for all older persons and provide a safety net that contributes to the postponement of disability and prevention of impoverishment in old age".[150]

It has been argued that population ageing has undermined economic development.[157] Evidence suggests that pensions, while making a difference to the well-being of older persons, also benefit entire families especially in times of crisis when there may be a shortage or loss of employment within households. A study by the Australian Government in 2003 estimated that "women between the ages of 65 and 74 years contribute A$16 billion per year in unpaid caregiving and voluntary work. Similarly, men in the same age group contributed A$10 billion per year."[150]

Due to increasing share of the elderly in the population, health care expenditures will continue to grow relative to the economy in coming decades. This has been considered as a negative phenomenon and effective strategies like labour productivity enhancement should be considered to deal with negative consequences of ageing.[158]

Sociology

Christoffer Wilhelm Eckersberg: Ages of Man

In the field of sociology and mental health, ageing is seen in five different views: ageing as maturity, ageing as decline, ageing as a life-cycle event, ageing as generation, and ageing as survival.[159] Positive correlates with ageing often include economics, employment, marriage, children, education, and sense of control, as well as many others. The social science of ageing includes disengagement theory, activity theory, selectivity theory, and continuity theory. Retirement, a common transition faced by the elderly, may have both positive and negative consequences.[160] As cyborgs currently are on the rise some theorists argue there is a need to develop new definitions of ageing and for instance a bio-techno-social definition of ageing has been suggested.[161]

There is a current debate as to whether or not the pursuit of longevity and the postponement of senescence are cost-effective health care goals given finite health care resources. Because of the accumulated infirmities of old age, bioethicist Ezekiel Emanuel, opines that the pursuit of longevity via the compression of morbidity hypothesis is a "fantasy" and that human life is not worth living after age 75; longevity then should not be a goal of health care policy.[162] This opinion has been contested by neurosurgeon and medical ethicist Miguel Faria, who states that life can be worthwhile during old age, and that longevity should be pursued in association with the attainment of quality of life.[163] Faria claims that postponement of senescence as well as happiness and wisdom can be attained in old age in a large proportion of those who lead healthy lifestyles and remain intellectually active.[164]

Health care demand

With age inevitable biological changes occur that increase the risk of illness and disability. UNFPA states that,[154]

"A life-cycle approach to health care – one that starts early, continues through the reproductive years and lasts into old age – is essential for the physical and emotional well-being of older persons, and, indeed, all people. Public policies and programmes should additionally address the needs of older impoverished people who cannot afford health care."

Many societies in Western Europe and Japan have ageing populations. While the effects on society are complex, there is a concern about the impact on health care demand. The large number of suggestions in the literature for specific interventions to cope with the expected increase in demand for long-term care in ageing societies can be organised under four headings: improve system performance; redesign service delivery; support informal caregivers; and shift demographic parameters.[165]

However, the annual growth in national health spending is not mainly due to increasing demand from ageing populations, but rather has been driven by rising incomes, costly new medical technology, a shortage of health care workers and informational asymmetries between providers and patients.[166] A number of health problems become more prevalent as people get older. These include mental health problems as well as physical health problems, especially dementia.

It has been estimated that population ageing only explains 0.2 percentage points of the annual growth rate in medical spending of 4.3% since 1970. In addition, certain reforms to the Medicare system in the United States decreased elderly spending on home health care by 12.5% per year between 1996 and 2000.[167]

Self-perception

As humans age, their bodies begin to break down and their skin begins to look different, but people do not always welcome these changes to their appearance.[168]

Beauty standards have evolved over time, and as scientific research in cosmeceuticals has increased, the industry has also expanded; the kinds of products they produce (such as serums and creams) have gradually gained popularity and become a part of many people's personal care routine.[169] The cosmeceutical industry is currently the fastest growing beauty industry, with a market size of $49.5 billion for the year 2018.[170]

The increase in demand for cosmeceuticals has led scientists to find ingredients for these products in unorthodox places. For example, cryptomphalus aspersa secretion (or brown garden snail secretion) has been found to have antioxidant properties, increase skin cell proliferation, as well as increase extracellular proteins such as collagen and fibronectin (important proteins for cell proliferation).[171] Another substance used to prevent the physical manifestations of aging is onobotulinumtoxinA, the toxin injected for Botox.[172]

Generally, aversion to ageing is a Western attitude. However, in other places around the world, old age is celebrated and honored. In Korea, for example, a special party called hwangap is held to celebrate and congratulate an individual for turning 60 years old.[173]

Positive self-perceptions of aging are associated with better mental and physical health and well-being.[174] Positive self-perception of health has been correlated with higher well-being and reduced mortality among the elderly.[175][176] Various reasons have been proposed for this association; people who are objectively healthy may naturally rate their health better as than that of their ill counterparts, though this link has been observed even in studies which have controlled for socioeconomic status, psychological functioning and health status.[177] This finding is generally stronger for men than women,[176] though this relationship is not universal across all studies and may only be true in some circumstances.[177]

As people age, subjective health remains relatively stable, even though objective health worsens.[178] In fact, perceived health improves with age when objective health is controlled in the equation.[179] This phenomenon is known as the "paradox of ageing". This may be a result of social comparison;[180] for instance, the older people get, the more they may consider themselves in better health than their same-aged peers.[181] Elderly people often associate their functional and physical decline with the normal ageing process.[182][183]

One way to help younger people experience what it feels like to be older is through an ageing suit. There are several different kinds of suits including the GERT (named as a reference to gerontology), the R70i exoskeleton, and the AGNES (Age Gain Now Empathy Suit) suits.[184][185][186] These suits create the feelings of the effects of aging by adding extra weight and increased pressure in certain points like the wrists, ankles and other joints. In addition, the various suits have different ways to impair vision and hearing to simulate the loss of these senses. To create the loss of feeling in hands that the elderly experience, special gloves are a part of the uniforms.

Use of these suits may help to increase the amount of empathy felt for the elderly and could be considered particularly useful for those who are either learning about aging, or those who work with the elderly, such as nurses or care center staff.

Empathy is another field that could benefit from the empathy these suits may cause.[184][186] When designers understand what it feels like to have the impairments of old age, they can better design buildings, packaging, or even tools to help with the simple day-to-day tasks that are more difficult with less dexterity. Designing with the elderly in mind may help to reduce the negative feelings that are associated with the loss of abilities that the elderly face.

Successful ageing

The concept of successful ageing can be traced back to the 1950s and was popularised in the 1980s. Traditional definitions of successful ageing have emphasised absence of physical and cognitive disabilities.[187] In their 1987 article, Rowe and Kahn characterised successful ageing as involving three components: a) freedom from disease and disability, b) high cognitive and physical functioning, and c) social and productive engagement.[188]

References
ISBN links support NWE through referral fees

  1. Liochev, Stefan I. (2015-12-17). Which Is the Most Significant Cause of Aging?. Antioxidants 4 (4): 793–810.
  2. 2.0 2.1 2.2 (2004). Living and dying for sex. A theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology 50 (5): 265–90.
  3. 3.0 3.1 3.2 3.3 McDonald, Roger B. (2019-06-07), "Basic Concepts in the Biology of Aging", Biology of Aging, Garland Science, ISBN 978-0-429-03064-2, DOI:10.1201/9780429030642-1 
  4. "Big ears: they really do grow as we age", July 2013.
  5. 5.0 5.1 (2004). Age Dynamics of Body Mass and Human Lifespan. Journal of Evolutionary Biochemistry and Physiology 40 (3): 343–349.
  6. Ahmed, Abu Shufian Ishtiaq (2017). Effect of aging on stem cells. World Journal of Experimental Medicine 7 (1): 1.
  7. 7.0 7.1 (2007). Life Span Extension Research and Public Debate: Societal Considerations. Studies in Ethics, Law, and Technology 1.
  8. (August 2014) Extended high-frequency (9-20 kHz) audiometry reference thresholds in 645 healthy subjects. International Journal of Audiology 53 (8): 531–45.
  9. (April 2012) Chemical consequences of cutaneous photoageing. Chemistry Central Journal 6 (1): 34.
  10. pmhdev (25 March 2015). Infertility: Overview.
  11. (August 2008) Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology 9 (4): 213–28.
  12. (February 2008) Determinants of VO2 max decline with aging: an integrated perspective. Applied Physiology, Nutrition, and Metabolism 33 (1): 130–40.
  13. (November 2001)Effects of Aging on Hand Function. Journal of the American Geriatrics Society 49 (11): 1478–1484.
  14. Facts About Presbyopia. National Eye Institute.
  15. (2003). Epidemiology of refractive errors and presbyopia. Survey of Ophthalmology 48 (5): 515–43.
  16. 16.0 16.1 (February 2009) Presbyopia. Emerging from a blur towards an understanding of the molecular basis for this most common eye condition. Experimental Eye Research 88 (2): 241–7.
  17. (March 2013) The eye as a model of ageing in translational research—molecular, epigenetic and clinical aspects. Ageing Research Reviews 12 (2): 490–508.
  18. (2013) Premature graying of hair. Indian Journal of Dermatology, Venereology and Leprology 79 (5): 641–53.
  19. (March 1951) Patterned loss of hair in man; types and incidence. Annals of the New York Academy of Sciences 53 (3): 708–28.
  20. (November 2015) Selected Disorders of Skin Appendages—Acne, Alopecia, Hyperhidrosis. The Medical Clinics of North America 99 (6): 1195–211.
  21. (December 1998) International variability in ages at menarche, first livebirth, and menopause. World Health Organization Collaborative Study of Neoplasia and Steroid Contraceptives. American Journal of Epidemiology 148 (12): 1195–205.
  22. (February 2014) Defining and mapping the person with osteoarthritis for population studies and public health. Rheumatology 53 (2): 338–45.
  23. Hearing Loss and Older Adults (Last Updated 3 June 2016). National Institute on Deafness and Other Communication Disorders (2016-01-26).
  24. (March 2013) A brief history of hair cell regeneration research and speculations on the future. Hearing Research 297: 42–51.
  25. Facts About Cataract (September 2015).
  26. (March 2001) Frailty in older adults: evidence for a phenotype. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 56 (3): M146-56.
  27. Percentage derived from Table 2 in Fried et al. 2001
  28. 28.0 28.1 (July 2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circulation Research 111 (2): 245–59.
  29. (February 2016) Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circulation Research 118 (4): 535–46.
  30. The top 10 causes of death. WHO (9 December 2020).
  31. Does Human Life Span Really Have a Limit? (28 June 2018).
  32. Zimmer, Carl, "What's the Longest Humans Can Live? 115 Years, New Study Says", The New York Times, 5 October 2016.
  33. (October 2016) Evidence for a limit to human lifespan. Nature 538 (7624): 257–259.
  34. (December 2013) New insights into the dementia epidemic. The New England Journal of Medicine 369 (24): 2275–7.
  35. (2012) Neurological rehabilitation, 6th, St. Louis, MO: Elsevier Mosby. ISBN 978-0-323-07586-2. 
  36. (2005) Developmental Influences on Adult Intelligence. DOI:10.1093/acprof:oso/9780195156737.001.0001. ISBN 978-0-19-515673-7. {{ safesubst:#invoke:Unsubst||date=__DATE__ |$B= }}
  37. 37.0 37.1 (2006) The Psychology of Ageing: An Introduction. London: Jessica Kingsley Publishers. ISBN 978-1-84310-426-1. 
  38. (July 2003) Marked loss of myelinated nerve fibers in the human brain with age. The Journal of Comparative Neurology 462 (2): 144–52.
  39. (1 January 2007) "The Effects of Normal Aging on Nerve Fibers and Neuroglia in the Central Nervous System", Brain Aging: Models, Methods, and Mechanisms, Frontiers in Neuroscience. CRC Press/Taylor & Francis. ISBN 978-0-8493-3818-2. 
  40. (2003) "Theoretical foundations of communication disability in aging", Communication disability in aging: from prevention to intervention. Clifton Park, NY: Delmar Learning, 32–33. 
  41. (April 2019) Improved mood despite worsening physical health in older adults: Findings from the International Mobility in Aging Study (IMIAS). PLOS ONE 14 (4): e0214988.
  42. (September 2015) Age-Related Macular Degeneration. Primary Care 42 (3): 377–91.
  43. (1989) "Barriers to conversation", Communication and aging. New York: Harper & Row, 234–53. 
  44. Cataracts | National Eye Institute.
  45. Glaucoma | National Eye Institute.
  46. Glaucoma | National Eye Institute.
  47. 47.0 47.1 (January 2019) Age-related diseases as vicious cycles. Ageing Research Reviews 49: 11–26.
  48. (May 2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367 (9524): 1747–57.
  49. Brunet Lab: Molecular Mechanisms of Longevity and Age Related Diseases. Stanford.edu. Retrieved on 11 April 2012.
  50. (2016)Epigenomic maintenance through dietary intervention can facilitate DNA repair process to slow down the progress of premature aging. IUBMB Life 68 (9): 717–721.
  51. (May 2019) 'Obesageing': Linking obesity & ageing. The Indian Journal of Medical Research 149 (5): 610–615.
  52. (2019-05-03) Obesity May Accelerate the Aging Process. Frontiers in Endocrinology 10.
  53. 53.0 53.1 (December 2015) Protein biogenesis machinery is a driver of replicative aging in yeast. eLife 4: e08527.
  54. (2012) "Analysis of Aging in Caenorhabditis elegans", Caenorhabditis Elegans: Cell Biology and Physiology. Academic Press, 353–81. ISBN 978-0-12-394620-1. 
  55. 55.0 55.1 55.2 55.3 (October 2009) Extreme-longevity mutations orchestrate silencing of multiple signaling pathways. Biochimica et Biophysica Acta (BBA) - General Subjects 1790 (10): 1075–83.
  56. Mitochondrial Theory of Aging and Other Aging Theories. 1Vigor.
  57. 57.0 57.1 (October 2010) Modern Biological Theories of Aging. Aging and Disease 1 (2): 72–74.
  58. (June 2013) The hallmarks of aging. Cell 153 (6): 1194–217.
  59. (2008). Molecular Biology of Aging. Cell 96 (2): 347–62.
  60. (May 2011) Aging as an event of proteostasis collapse. Cold Spring Harbor Perspectives in Biology 3 (5): a004440.
  61. (December 2008)Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nature Genetics 40 (12): 1489–92.
  62. 62.0 62.1 "The oldest living thing on Earth", BBC News, 12 June 2017.
  63. Oldlist. Rocky Mountain Tree Ring Research.
  64. (December 2014) A heart that beats for 500 years: age-related changes in cardiac proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in Arctica islandica, the longest-living noncolonial animal. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 69 (12): 1448–61.
  65. (August 2016)Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353 (6300): 702–4.
  66. (August 2017) Extreme longevity in a deep-sea vestimentiferan tubeworm and its implications for the evolution of life history strategies. Die Naturwissenschaften 104 (7–8): 63.
  67. Timiras, Paola S. (2003) Physiological Basis of Ageing and Geriatrics. Informa Health Care. Template:ISBN. p. 26.
  68. Is there a 400 pound lobster out there?. howstuffworks (2007-07-05).
  69. (2005) Consider the Lobster and Other Essays. Little, Brown & Company. ISBN 978-0-316-15611-0. {{ safesubst:#invoke:Unsubst||date=__DATE__ |$B= }}
  70. (June 2004) Emerging area of aging research: long-lived animals with "negligible senescence". Annals of the New York Academy of Sciences 1019 (1): 518–20.
  71. Cite error: Invalid <ref> tag; no text was provided for refs named Williams1957
  72. (July 2003) The free-radical hypothesis of aging goes prokaryotic. Cellular and Molecular Life Sciences 60 (7): 1333–41.
  73. (June 2009) Single-nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proceedings of the National Academy of Sciences of the United States of America 106 (24): 9761–6.
  74. (April 2012) Effects of BRCA1 and BRCA2 mutations on female fertility. Proceedings. Biological Sciences 279 (1732): 1389–95.
  75. (2011). The reproductive-cell cycle theory of aging: an update. Experimental Gerontology 46 (2–3): 100–7.
  76. (September 2011) SIP-ing the elixir of youth. Cell 146 (6): 859–60.
  77. University of California San Diego (2018-12-26). UC San Diego Researchers Identify How Skin Ages, Loses Fat and Immunity. Press release.
  78. (January 2019) Age-Related Loss of Innate Immune Antimicrobial Function of Dermal Fat Is Mediated by Transforming Growth Factor Beta. Immunity 50 (1): 121–136.e5.
  79. (September 1981) DNA damage as the primary cause of aging. The Quarterly Review of Biology 56 (3): 279–303.
  80. (June 2014) Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of WNIN/Ob, a novel rat model of premature aging. Neuroscience 269: 256–64.
  81. (2011). A review and appraisal of the DNA damage theory of ageing. Mutation Research 728 (1–2): 12–22.
  82. (August 2010) Genetic, epigenetic and posttranslational mechanisms of aging. Biogerontology 11 (4): 387–99.
  83. (1986). Genetic instability as the primary cause of human aging. Experimental Gerontology 21 (4–5): 283–319.
  84. (2006) "Reliability Theory of Aging and Longevity", Handbook of the Biology of Aging. San Diego, CA: Academic Press, 3–42. 
  85. (2013). Autophagy and ageing: implications for age-related neurodegenerative diseases. Essays in Biochemistry 55: 119–31.
  86. (2013). Chronic caloric restriction and exercise improve metabolic conditions of dietary-induced obese mice in autophagy correlated manner without involving AMPK. Journal of Diabetes Research 2013: 852754.
  87. (September 2020)Heterochromatin: an epigenetic point of view in aging. Experimental & Molecular Medicine 52 (9): 1466–1474.
  88. (1997-07-01)The heterochromatin loss model of aging. Experimental Gerontology 32 (4–5): 383–94.
  89. (July 2012) Global heterochromatin loss: a unifying theory of aging?. Epigenetics 7 (7): 680–8.
  90. (May 2015) The mechanism of ageing: primary role of transposable elements in genome disintegration. Cellular and Molecular Life Sciences 72 (10): 1839–47.
  91. (May 2018) Longevity and transposon defense, the case of termite reproductives. Proceedings of the National Academy of Sciences of the United States of America 115 (21): 5504–5509.
  92. (October 2017) The Piwi-piRNA pathway: road to immortality. Aging Cell 16 (5): 906–911.
  93. 93.0 93.1 Cite error: Invalid <ref> tag; no text was provided for refs named Bernstein book
  94. (1990). The crosslinking theory of aging—added evidence. Experimental Gerontology 25 (2): 91–5.
  95. (February 2008) Mitochondrial dysfunction as a cause of ageing. Journal of Internal Medicine 263 (2): 167–78.
  96. (November 1981) The aging process. Proceedings of the National Academy of Sciences of the United States of America 78 (11): 7124–8.
  97. (October 2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metabolism 6 (4): 280–93.
  98. (August 2001) Does oxidative damage to DNA increase with age?. Proceedings of the National Academy of Sciences of the United States of America 98 (18): 10469–74.
  99. (March 2005) Peripheral lymphocyte 8-OHdG levels correlate with age-associated increase of tissue oxidative DNA damage in Sprague-Dawley rats. Protective effects of caloric restriction. Experimental Gerontology 40 (3): 181–8.
  100. (October 2000) Mitochondria, oxidative DNA damage, and aging. Journal of the American Aging Association 23 (4): 199–218.
  101. Vijg J. From DNA damage to mutations: All roads lead to aging. Ageing Res Rev. 2021 Mar 9;68:101316. doi: 10.1016/j.arr.2021.101316. Epub ahead of print. PMID 33711511
  102. 102.0 102.1 102.2 (February 2005) Calorie restriction—the SIR2 connection. Cell 120 (4): 473–82.
  103. (January 2011) Resveratrol and life extension. Annals of the New York Academy of Sciences 1215 (1): 138–43.
  104. 104.0 104.1 Cite error: Invalid <ref> tag; no text was provided for refs named Junnila2013
  105. (June 2008) Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function. Obesity 16 (6): 1355–62.
  106. (April 2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295 (13): 1539–48.
  107. (July 2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325 (5937): 201–4.
  108. (September 2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489 (7415): 318–21.
  109. (April 2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nature Communications 5: 3557.
  110. "There may be little advantage of moderate CR over modest CR—this would be an extremely important discovery and one that merits further investigation."
  111. (1994) How and why we age. New York: Ballantine Books. ISBN 978-0-345-33918-8. OCLC 29908633. 
  112. (February 2017) Obesity in Older People With and Without Conditions Associated With Weight Loss: Follow-up of 955,000 Primary Care Patients. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 72 (2): 203–209.
  113. (June 2012) Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11 (3): 401–9.
  114. (October 2009) Macronutrient balance and lifespan. Aging 1 (10): 875–80.
  115. (April 2010) Extending healthy life span—from yeast to humans. Science 328 (5976): 321–6.
  116. (March 2012) Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World Journal of Diabetes 3 (3): 38–53.
  117. (August 2012) Amino acid sensing and regulation of mTORC1. Seminars in Cell & Developmental Biology 23 (6): 621–5.
  118. (March 2019) Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. The Cochrane Database of Systematic Reviews 3: CD009825.
  119. (September 2008) Adherence to Mediterranean diet and health status: meta-analysis. BMJ 337 (sep11 2): a1344.
  120. de Gaetano, Giovanni (2016-08-29). Mediterranean diet associated with lower risk of early death in cardiovascular disease patients. European Society of Cardiology. ScienceDaily.
  121. "Experts challenge study linking sleep, life span", CNN, 15 February 2002.
  122. (May 2004) A prospective study of sleep duration and mortality risk in women. Sleep 27 (3): 440–4.
  123. (December 2007) A prospective study of change in sleep duration: associations with mortality in the Whitehall II cohort. Sleep 30 (12): 1659–66.
  124. (July 2006) Correlates of long sleep duration. Sleep 29 (7): 881–9.; cf. (February 2005) Sleep deprivation potentiates activation of cardiovascular and catecholamine responses in abstinent alcoholics. Hypertension 45 (2): 252–7.
  125. (November 2015) Natural sleep and its seasonal variations in three pre-industrial societies. Current Biology 25 (21): 2862–2868.
  126. (December 2012) Exercise and longevity. Maturitas 73 (4): 312–7.
  127. (1996) Physical Activity and Health. ISBN 978-1-4289-2794-0. 
  128. (February 2012) Exercise, inflammation and aging. Aging and Disease 3 (1): 130–40.
  129. 129.0 129.1 (August 2016) Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 354: i3857.
  130. (2007-08-01)Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends in Cognitive Sciences 11 (8): 342–348.
  131. (October 2015) Epigenetics and Understanding the Impact of Social Determinants of Health. Pediatric Clinics of North America 62 (5): 1227–40.
  132. (April 2014) Protocol for a systematic review of the association between chronic stress during the life course and telomere length. Systematic Reviews 3 (40): 40.
  133. (October 2012) Cortisol serum levels in familial longevity and perceived age: the Leiden longevity study. Psychoneuroendocrinology 37 (10): 1669–75.
  134. (October 2013) The association between cortisol response to mental stress and high-sensitivity cardiac troponin T plasma concentration in healthy adults. Journal of the American College of Cardiology 62 (18): 1694–1701.
  135. (July 2010) Social relationships and mortality risk: a meta-analytic review. PLOS Medicine 7 (7): e1000316.
  136. Social ties are good for your health. stanford.edu.
  137. (2012) Handbook of religion and health, 2nd, New York: Oxford University Press, 476. 
  138. Married Vs Single: What Science Says Is Better For Your Health. medicaldaily.com (2 April 2015).
  139. (July 2012) Meta-analysis of marital dissolution and mortality: reevaluating the intersection of gender and age. Social Science & Medicine 75 (1): 46–59.
  140. (October 2013) Resveratrol vs. calorie restriction: data from rodents to humans. Experimental Gerontology 48 (10): 1018–24.
  141. 141.0 141.1 (November 2015) Repurposing metformin: an old drug with new tricks in its binding pockets. The Biochemical Journal 471 (3): 307–22.
  142. (January 2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes & Development 20 (2): 174–84.
  143. (July 2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460 (7253): 392–5.
  144. (February 2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 66 (2): 191–201.
  145. (March 2011) Glycolytic inhibition as a strategy for developing calorie restriction mimetics. Experimental Gerontology 46 (2–3): 148–54.
  146. (May 2015) Testing efficacy of administration of the antiaging drug rapamycin in a nonhuman primate, the common marmoset. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 70 (5): 577–87.
  147. (2010). Telomerase reverses ageing process. Nature.
  148. Phillips, Judith, Kristine Ajrouch, and Sarah Hillcoat-Nallétamby (2010) Key Concepts in Social Gerontology. SAGE Publications. Template:ISBN. pp. 12–13.
  149. (January 2020) Ageism Amplifies Cost and Prevalence of Health Conditions. The Gerontologist 60 (1): 174–181.
  150. 150.0 150.1 150.2 150.3 150.4 150.5 150.6 Ageing in the Twenty-First Century. UNFPA (2012).
  151. (2015). The music culture of older adults in Cantonese operatic singing lessons. Ageing and Society 35 (8): 1614–34.
  152. (December 2005) Understanding generations: political economy and culture in an ageing society. The British Journal of Sociology 56 (4): 579–99.
  153. Population Ageing and Development. UNFPA (2002).
  154. 154.0 154.1 Ageing. unfpa.org. UNFPA – United Nations Population Fund.
  155. UN Human Development Report 2005. United Nations Development Programme.
  156. 156.0 156.1 Chosewood, L. Casey. Safer and Healthier at Any Age: Strategies for an Aging Workforce. NIOSH Science Blog. National Institute for Occupational Safety and Health.
  157. (2015). Population Aging And Iran's Non-Oil Economic Growth. Payavard Salamat 9 (2): 131–46.
  158. (2014). Health care cost disease as a threat to Iranian aging society. Journal of Research in Health Sciences 14 (2): 152–6.
  159. (2010) A Handbook for the Study of Mental Health, Second, New York: Cambridge University Press. 
  160. (1989) Adult development and aging. San Francisco: Harper & Row. ISBN 978-0-06-045012-0. {{ safesubst:#invoke:Unsubst||date=__DATE__ |$B= }}
  161. (December 2014) Defining aging in cyborgs: a bio-techno-social definition of aging. Journal of Aging Studies 31: 104–9.
  162. (October 2014)Why I hope to die at 75: An argument that society and families – and you – will be better off if nature takes its course swiftly and promptly. The Atlantic.
  163. (2015). Bioethics and why I hope to live beyond age 75 attaining wisdom!: A rebuttal to Dr. Ezekiel Emanuel's 75 age limit. Surgical Neurology International 6: 35.
  164. (2015) Longevity and compression of morbidity from a neuroscience perspective: Do we have a duty to die by a certain age?. Surgical Neurology International 6: 49.
  165. (2006). The impact of aging on long-term care in Europe and some potential policy responses. International Journal of Health Services 36 (4): 719–46.
  166. (2003). Does the aging of the population really drive the demand for health care?. Health Affairs 22 (6): 27–39.
  167. (2004). Trends in medical spending by age, 1963-2000. Health Affairs 23 (4): 176–83.
  168. Here's Everything That's Wrong With Our 'Under 30' Obsession (in en) (2014-02-20).
  169. (March 2019) Botulinum Toxin Application in Facial Esthetics and Recent Treatment Indications (2013-2018). Journal of International Society of Preventive & Community Dentistry 9 (2): 99–105.
  170. Global Cosmeceutical Market Size & Share Report, 2019-2025 (in en).
  171. (June 2018) The use of natural ingredients in innovative Korean cosmeceuticals. Journal of Cosmetic Dermatology 17 (3): 305–312. [verification needed]
  172. Botox injections - Mayo Clinic.
  173. Korea - Birthday Celebrations.
  174. (August 2020) Associations of Awareness of Age-Related Change With Emotional and Physical Well-being: A Systematic Review and Meta-analysis. The Gerontologist 60 (6): e477–e490.
  175. (2003). Discussion: Gender Differences in Self-Rated Health, in Mortality, and in the Relationship Between the Two. The Gerontologist 43 (3): 372–75.
  176. 176.0 176.1 (June 2003) Self-rated health, gender, and mortality in older persons: introduction to a special section. The Gerontologist 43 (3): 369–71.
  177. 177.0 177.1 (June 2003) Gender differences in the self-rated health-mortality association: is it poor self-rated health that predicts mortality or excellent self-rated health that predicts survival?. The Gerontologist 43 (3): 396–405; discussion 372–5.
  178. (September 2000) Is age-related stability of subjective well-being a paradox? Cross-sectional and longitudinal evidence from the Berlin Aging Study. Psychology and Aging 15 (3): 511–26.
  179. (October 2001) Walking difficulty, walking speed, and age as predictors of self-rated health: the women's health and aging study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 56 (10): M609-17.
  180. (1999) Developmental Regulation in Adulthood: Age-Normative and Sociostructural Constraints as Adaptive Challenges. Cambridge University Press. ISBN 978-0-521-02713-7. 
  181. (September 2008) Determinants of self-rated health items with different points of reference: implications for health measurement of older adults. Journal of Aging and Health 20 (6): 739–61.
  182. (November 1993) Age differences in self-assessments of health: age changes, cohort differences, or survivorship?. Journal of Gerontology 48 (6): S289-300.
  183. (December 1996) Characterization of older adults who attribute functional decrements to "old age". Journal of the American Geriatrics Society 44 (12): 1429–34.
  184. 184.0 184.1 40 Years In 5 Minutes: Age Simulation Suit Aims To Increase Empathy In Building Design (in en).
  185. Prindle, Drew (7 January 2016). Hands on: Genworth R70i Exoskeleton.
  186. 186.0 186.1 AGNES (Age Gain Now Empathy System) | MIT AgeLab.
  187. (1990) "Psychological perspectives on successful aging: The model of selective optimization with compensation", Successful Aging, 1–34. DOI:10.1017/CBO9780511665684.003. ISBN 978-0-511-66568-4. 
  188. (July 1987) Human aging: usual and successful. Science 237 (4811): 143–9.

External links

All links retrieved

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.