Difference between revisions of "Aspartic acid" - New World Encyclopedia

From New World Encyclopedia
({{Contracted}})
Line 1: Line 1:
{{Claimed}}
+
{{Claimed}}{{Contracted}}
 
{{NatOrganicBox
 
{{NatOrganicBox
 
| image= [[Image:L-aspartic-acid-skeletal.png|100px|Chemical structure of Aspartic acid]][[Image:L-aspartic-acid-3D-sticks.png|90px|Chemical structure of the amino acid aspartate]]<br />Chemical structure of L-aspartic acid
 
| image= [[Image:L-aspartic-acid-skeletal.png|100px|Chemical structure of Aspartic acid]][[Image:L-aspartic-acid-3D-sticks.png|90px|Chemical structure of the amino acid aspartate]]<br />Chemical structure of L-aspartic acid

Revision as of 20:02, 15 June 2007

Chemical structure of Aspartic acidChemical structure of the amino acid aspartate
Chemical structure of L-aspartic acid

Aspartic acid

Systematic (IUPAC) name
(2S)-2-aminobutanedioic acid
Identifiers
CAS number 56-84-8
PubChem         5960
Chemical data
Formula C4H7NO4 
Mol. weight 133.10
SMILES N[C@@H](CC(O)=O)C(O)=O
Complete data


Aspartic acid is an α-amino acid with the chemical formula HO2CCH(NH2)CH2CO2H. The L-isomer is one of the 20 proteinogenic amino acids, i.e. the building blocks of proteins. Its three letter code is asp, its one letter code is D, and its codons are GAU and GAC.[1] It is classified as an acidic amino acid, together with glutamic acid. Aspartic acid is pervasive in biosynthesis.

Role in biosynthesis of amino acids

Aspartic acid is non-essential in mammals, being produced from oxaloacetate by transamination. In plants and microorganisms, aspartic acid is the precursor to several amino acids, including four that are essential: methionine, threonine, isoleucine, and lysine. The conversion of aspartic acid to these other amino acids begins with reduction of aspartic acid to its "semialdehyde," HO2CCH(NH2)CH2CHO.[2] Asparagine is derived from aspartic acid via transamidation:

HO2CCH(NH2)CH2CO2H + GC(O)NH2 HO2CCH(NH2)CH2CONH2 + GC(O)OH

(where GC(O)NH2 and GC(O)OH are glutamine and glutamic acid, respectively)

Other biochemical roles

Aspartic acid is also a metabolite in the urea cycle and participates in gluconeogenesis. It carries reducing equivalents in the malate-aspartate shuttle, which utilizes the ready interconversion of aspartate and oxaloacetate, which is the oxidized (dehydrogenated) derivative of malic acid. Aspartic acid donates one nitrogen atom in the biosynthesis of inositol, the precursor to the purine bases.

Neurotransmitter

Aspartate (the conjugate base of aspartic acid) stimulates NMDA receptors, though not as strongly as the amino acid neurotransmitter glutamate does.[3] It serves as an excitatory neurotransmitter in the brain and is an excitotoxin.

As a neurotransmitter, aspartic acid may provide resistance to fatigue and thus lead to endurance, although the evidence to support this idea is not strong.

Synthesis

Racemic aspartic acid can be synthesized from diethyl sodium phthalimidomalonate, (C6H4(CO)2NC(CO2Et)2).[4]

References
ISBN links support NWE through referral fees

  1. IUPAC-IUBMB Joint Commission on Biochemical Nomenclature. Nomenclature and Symbolism for Amino Acids and Peptides. Recommendations on Organic & Biochemical Nomenclature, Symbols & Terminology etc. Retrieved 2007-05-17.
  2. Nelson, D. L.; Cox, M. M. "Lehninger, Principles of Biochemistry" 3rd Ed. Worth Publishing: New York, 2000. ISBN 1-57259-153-6.
  3. Philip E. Chen, Matthew T. Geballe, Phillip J. Stansfeld, Alexander R. Johnston, Hongjie Yuan, Amanda L. Jacob, James P. Snyder, Stephen F. Traynelis, and David J. A. Wyllie. 2005. Structural Features of the Glutamate Binding Site in Recombinant NR1/NR2A N-Methyl-D-aspartate Receptors Determined by Site-Directed Mutagenesis and Molecular Modeling. Molecular Pharmacology. Volume 67, Pages 1470-1484.
  4. Dunn, M. S.; Smart, B. W. “DL-Aspartic Acid”Organic Syntheses, Collected Volume 4, p.55 (1963). http://www.orgsyn.org/orgsyn/pdfs/CV4P0055.pdf

See also

  • Aspartate transaminase
  • Sodium poly(aspartate), a synthetic polyamide

External links

Template:ChemicalSources


Major families of biochemicals
Peptides | Amino acids | Nucleic acids | Carbohydrates | Nucleotide sugars | Lipids | Terpenes | Carotenoids | Tetrapyrroles | Enzyme cofactors | Steroids | Flavonoids | Alkaloids | Polyketides | Glycosides
Analogues of nucleic acids:The 20 Common Amino AcidsAnalogues of nucleic acids:
Alanine (dp) | Arginine (dp) | Asparagine (dp) | Aspartic acid (dp) | Cysteine (dp) | Glutamic acid (dp) | Glutamine (dp) | Glycine (dp) | Histidine (dp) | Isoleucine (dp) | Leucine (dp) | Lysine (dp) | Methionine (dp) | Phenylalanine (dp) | Proline (dp) | Serine (dp) | Threonine (dp) | Tryptophan (dp) | Tyrosine (dp) | Valine (dp)

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.