Difference between revisions of "Cube" - New World Encyclopedia

From New World Encyclopedia
(claim, fix, edits)
Line 2: Line 2:
 
:''This article is about the geometric shape. For other meanings of the word "cube," see [[cube (disambiguation)]].''
 
:''This article is about the geometric shape. For other meanings of the word "cube," see [[cube (disambiguation)]].''
 
{{Reg polyhedra db|Reg polyhedron stat table|C}}
 
{{Reg polyhedra db|Reg polyhedron stat table|C}}
A '''cube'''<ref>English ''cube'' from Old French < Latin ''cubus'' < Greek ''kubos'', "a cube, a die, vertebra." In turn from [[PIE]] ''*keu(b)-'', "to bend, turn".</ref> is a [[three-dimensional space|three-dimensional]] solid object bounded by six [[square (geometry)|square]] faces, facets or sides, with three meeting at each [[wikt:vertex|vertex]]. The cube can also be called a '''regular [[hexahedron]]''' and is one of the five [[Platonic solid]]s. It is a special kind of square [[prism (geometry)|prism]], of rectangular [[parallelepiped]] and of 3-sided [[trapezohedron]]. The cube is [[dual polyhedron|dual]] to the [[octahedron]]. It has cubical symmetry (also called [[octahedral symmetry]]). A cube is the three-dimensional case of the more general concept of a [[hypercube]], which exists in any dimension.
+
 
 +
A '''cube'''<ref>English ''cube'' from Old French < Latin ''cubus'' <Greek ''kubos'', "a cube, a die, vertebra." In turn from [[PIE]] ''*keu(b)-'', "to bend, turn".</ref> is a [[three-dimensional space|three-dimensional]] solid object bounded by six [[square (geometry)|square]] faces, facets or sides, with three meeting at each [[wikt:vertex|vertex]]. The cube can also be called a '''regular [[hexahedron]]''' and is one of the five [[Platonic solid]]s. It is a special kind of square [[prism (geometry)|prism]], of rectangular [[parallelepiped]] and of 3-sided [[trapezohedron]]. The cube is [[dual polyhedron|dual]] to the [[octahedron]]. It has cubical symmetry (also called [[octahedral symmetry]]). A cube is the three-dimensional case of the more general concept of a [[hypercube]], which exists in any dimension.
  
 
== Cartesian coordinates ==
 
== Cartesian coordinates ==
 +
 
For a cube centered at the origin, with edges parallel to the axes and with an edge length of 2, the [[Cartesian coordinates]] of the vertices are
 
For a cube centered at the origin, with edges parallel to the axes and with an edge length of 2, the [[Cartesian coordinates]] of the vertices are
 
: (±1,±1,±1)
 
: (±1,±1,±1)
Line 10: Line 12:
  
 
== Formulas ==
 
== Formulas ==
 +
 
For a cube of edge length <math>a</math>,
 
For a cube of edge length <math>a</math>,
 
{|class="wikitable"
 
{|class="wikitable"
Line 88: Line 91:
 
== Notes ==
 
== Notes ==
 
{{reflist}}
 
{{reflist}}
 +
 +
== References ==
 +
 +
* Arnone, Wendy. 2001. ''Geometry for Dummies''. Hoboken, NJ: For Dummies (Wiley). ISBN 0764553240.
 +
 +
* Cromwell, Peter R. 1997. ''Polyhedra''. Cambridge University Press. ISBN 0-521-66405-5.
 +
 +
* Hartshorne, Robin. 2002. ''Geometry: Euclid and Beyond''. Undergraduate Texts in Mathematics. New York: Springer. ISBN 0387986502.
 +
 +
* Leff, Lawrence S. 1997. ''Geometry the Easy Way''. Hauppauge, NY: Barron’s Educational Series. ISBN 0764101102.
 +
 +
* Pearce, P.; ''Structure in nature is a strategy for design'', MIT (1978)
 +
 +
* Sommerville, D.M.Y. 1930. ''An Introduction to the Geometry of n Dimensions.'' E. P. Dutton, New York. (Dover Publications edition, 1958). Chapter X: The Regular Polytopes.
 +
 +
* Wenninger, M.; ''Polyhedron models'', CUP hbk (1971), pbk (1974).
 +
 +
* Williams, R.; ''The geometrical foundation of natural structure'', Dover (1979).
  
 
==External links==
 
==External links==

Revision as of 16:57, 7 November 2007

This article is about the geometric shape. For other meanings of the word "cube," see cube (disambiguation).
Regular Hexahedron
Cube
(Click here for rotating model)
Type Platonic solid
Elements F = 6, E = 12
V = 8 (χ = 2)
Faces by sides 6{4}
Schläfli symbol {4,3}
Wythoff symbol 3 | 2 4
Coxeter-Dynkin CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW dot.png
Symmetry Oh
References U06, C18, W3
Properties Regular convex zonohedron
Dihedral angle 90°
Cube
4.4.4
(Vertex figure)
Octahedron.png
Octahedron
(dual polyhedron)
Cube
Net


A cube[1] is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. The cube can also be called a regular hexahedron and is one of the five Platonic solids. It is a special kind of square prism, of rectangular parallelepiped and of 3-sided trapezohedron. The cube is dual to the octahedron. It has cubical symmetry (also called octahedral symmetry). A cube is the three-dimensional case of the more general concept of a hypercube, which exists in any dimension.

Cartesian coordinates

For a cube centered at the origin, with edges parallel to the axes and with an edge length of 2, the Cartesian coordinates of the vertices are

(±1,±1,±1)

while the interior consists of all points (x0, x1, x2) with -1 < xi < 1.

Formulas

For a cube of edge length ,

surface area
volume
radius of circumscribed sphere
radius of sphere tangent to edges
radius of inscribed sphere

As the volume of a cube is the third power of its sides a×a×a, third powers are called cubes, by analogy with squares and second powers.

A cube construction has the largest volume among cuboids (rectangular boxes) with a given surface area (e.g., paper, cardboard, sheet metal, etc.). Also, a cube has the largest volume among cuboids with the same total linear size (length + width + height).

Symmetry

The cube has 3 classes of symmetry, which can be represented by vertex-transitive coloring the faces. The highest octahedral symmetry Oh has all the faces the same color. The dihedral symmetry D4h comes from the cube being a prism, with all four sides being the same color. The lowest symmetry D2h is also a prismatic symmetry, with sides alternating colors, so there are three colors, paired by opposite sides. Each symmetry form has a different Wythoff symbol.

Uniform polyhedron 222-t012.png
(3 colors)
| 2 2 2
D2h
Tetragonal prism.png
(2 colors)
4 2 | 2
D4h
Hexahedron.png
(1 color)
3 | 4 2
Oh

Geometric relations

The familiar six-sided dice are cube shaped

The cube is unique among the Platonic solids for being able to tile space regularly. It is also unique among the Platonic solids in having faces with an even number of sides and, consequently, it is the only member of that group that is a zonohedron (every face has point symmetry).


Other dimensions

File:Expo 67 cubes in a room.jpg
Room of cubes at Expo 67

The analogue of a cube in four-dimensional Euclidean space has a special name — a tesseract or (rarely) hypercube.

The analog of the cube in n-dimensional Euclidean space is called a hypercube or n-dimensional cube or simply n-cube. It is also called a measure polytope.

In math theory you can also have lower dimensional cube. A 0th dimensional cube is simply a point. A 1st dimensional cube is a segment. A 2nd dimensional cube is a square.

Related polyhedra

The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron. These two together form a regular compound, the stella octangula. The intersection of the two forms a regular octahedron. The symmetries of a regular tetrahedron correspond to those of a cube which map each tetrahedron to itself; the other symmetries of the cube map the two to each other.

One such regular tetrahedron has a volume of ⅓ of that of the cube. The remaining space consists of four equal irregular polyhedra with a volume of 1/6 of that of the cube, each.

The rectified cube is the cuboctahedron. If smaller corners are cut off we get a polyhedron with 6 octagonal faces and 8 triangular ones. In particular we can get regular octagons (truncated cube). The rhombicuboctahedron is obtained by cutting off both corners and edges to the correct amount.

A cube can be inscribed in a dodecahedron so that each vertex of the cube is a vertex of the dodecahedron and each edge is a diagonal of one of the dodecahedron's faces; taking all such cubes gives rise to the regular compound of five cubes.

The figures shown have the same symmetries as the cube (see octahedral symmetry).

Combinatorial cubes

A different kind of cube is the cube graph, which is the graph of vertices and edges of the geometrical cube. It is a special case of the hypercube graph.

An extension is the 3-dimensional k-ary Hamming graph, which for k = 2 is the cube graph. Graphs of this sort occur in the theory of parallel processing in computers.

See also

  • Unit cube
  • Kaaba, a large masonry structure roughly the shape of a cube

Notes

  1. English cube from Old French < Latin cubus <Greek kubos, "a cube, a die, vertebra." In turn from PIE *keu(b)-, "to bend, turn".

References
ISBN links support NWE through referral fees

  • Arnone, Wendy. 2001. Geometry for Dummies. Hoboken, NJ: For Dummies (Wiley). ISBN 0764553240.
  • Hartshorne, Robin. 2002. Geometry: Euclid and Beyond. Undergraduate Texts in Mathematics. New York: Springer. ISBN 0387986502.
  • Leff, Lawrence S. 1997. Geometry the Easy Way. Hauppauge, NY: Barron’s Educational Series. ISBN 0764101102.
  • Pearce, P.; Structure in nature is a strategy for design, MIT (1978)
  • Sommerville, D.M.Y. 1930. An Introduction to the Geometry of n Dimensions. E. P. Dutton, New York. (Dover Publications edition, 1958). Chapter X: The Regular Polytopes.
  • Wenninger, M.; Polyhedron models, CUP hbk (1971), pbk (1974).
  • Williams, R.; The geometrical foundation of natural structure, Dover (1979).

External links

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.