Encyclopedia, Difference between revisions of "Carl Wilhelm Scheele" - New World

From New World Encyclopedia
(added credit and category tags, deleted foreign language links)
Line 1: Line 1:
 +
{{Claimed}}
 +
{{epname}}
 
[[Image:Carl Wilhelm Scheele from Familj-Journalen1874.png|thumb|Carl Wilhelm Scheele]]
 
[[Image:Carl Wilhelm Scheele from Familj-Journalen1874.png|thumb|Carl Wilhelm Scheele]]
 
[[Image:Scheeles apotek och bostad i Köping..jpg|thumb|Scheele's house with his pharmacy in [[Köping, Sweden|Köping]].]]
 
[[Image:Scheeles apotek och bostad i Köping..jpg|thumb|Scheele's house with his pharmacy in [[Köping, Sweden|Köping]].]]
  
'''Carl Wilhelm Scheele''' ([[December 9]],[[1742]] - [[May 21]], [[1786]]) a [[Germany|German]]-[[Sweden|Swedish]] pharmaceutical chemist, born in [[Stralsund]], Western [[Pomerania]], [[Germany]] (at the time under Swedish rule), was the discoverer of many chemical substances, most notably discovering [[oxygen]] before [[Joseph Priestley]] and [[chlorine]] before [[Humphry Davy]].
+
'''Carl Wilhelm Scheele''' (December 9,1742 - May 21, 1786) a [[Germany|German]]-[[Sweden|Swedish]] pharmaceutical chemist, born in [[Stralsund]], Western [[Pomerania]], Germany (at the time under Swedish rule), was the discoverer of many chemical substances, most notably discovering [[oxygen]] before [[Joseph Priestley]] and [[chlorine]] before [[Humphry Davy]].
  
 
==Biography==
 
==Biography==
Instead of becoming a merchant like his father, Scheele decided to become a pharmacist.  His career as a [[pharmacist]] began with his apprenticeship at an apothecary in [[Gothenburg]] when he was only fourteen years old.  He retained this position for eight years before becoming an apothecary's clerk in [[Malmö]].  Then Scheele worked as a [[pharmacist]] in [[Stockholm]], from [[1770]] to [[1775]] in [[Upsala]], and later in [[Köping, Sweden|Köping]].  In [[1776]], he was able to establish his own pharmacy which he had purchased from the previous owner's widow.  The two were married only for Scheele to pass away 48 hours later.  Despite his lack of a thorough education, he clearly had an instinctive flair for experimentation.  Scheele's limited formal instruction makes his genius surprising.  The schooling which Scheele did have was private and it was through this education that he exhibited an inclination to study the art of the [[pharmacist]].
 
  
Unlike scientists such as [[Antoine Lavoisier]] and [[Isaac Newton]] who were more widely recognized, Scheele had a humble position in a small town, and yet he was still able to make many scientific discoveries.  He preferred his small dwelling to the grandeur of an extravagant house. Scheele turned down several high-paying offers by prestigious European academies.  Frederick the II offered him  a Berlin position, and the English government offered him a generous salary for his work, but Scheele remained at his pharmacy to serve his faithful customers.  Scheele made many discoveries in [[chemistry]] before others who are generally given the credit, and his numerous discoveries have yet to be surpassedOne of Scheele's most famous discoveries was [[oxygen]] produced as a by-product in a number of experiments in which he heated chemicals during [[1771]]-[[1772]].  Scheele, though, was not the one to name or define oxygen; that job would later be bestowed upon [[ Antoine Lavoisier]].  
+
Instead of becoming a merchant like his father, Scheele decided to become a pharmacist.  His career as a [[pharmacist]] began with his apprenticeship at an apothecary in [[Gothenburg]] when he was only fourteen years old.  He retained this position for eight years before becoming an apothecary's clerk in [[Malmö]].  Then Scheele worked as a pharmacist in [[Stockholm]], from 1770 to 1775 in [[Upsala]], and later in [[Köping, Sweden|Köping]].  In 1776, he was able to establish his own pharmacy which he had purchased from the previous owner's widow.  The two were married only for Scheele to pass away 48 hours later.  Despite his lack of a thorough education, he clearly had an instinctive flair for experimentation.  Scheele's limited formal instruction makes his genius surprising.  The schooling which Scheele did have was private and it was through this education that he exhibited an inclination to study the art of the pharmacist.
  
Scheele put substantial effort into learning as much as he could in [[science]].  He would stay up late at night reading different chemical books.  His studies led him to the discovery of [[oxygen]] and [[nitrogen]] in [[1772]]-[[1773]], which he published in his only book, ''Chemische Abhandlung von der Luft und dem Feuer'' (''Chemical Treatise on Air and Fire'') in [[1777]], losing some fame to [[Joseph Priestley]], who independently discovered oxygen in [[1774]].  In his book, he also distinguished [[heat transfer]] by [[thermal radiation]] from that by [[convection]] or [[heat conduction|conduction]].  Like many other chemists of his time, Scheele often worked under difficult and even dangerous conditions.  Also, he had a habit of tasting chemicals that he found.  It appears that this was the cause of his premature death at the age of 43; his death symptoms resemble [[mercury poisoning]].
+
Unlike scientists such as [[Antoine Lavoisier]] and [[Isaac Newton]] who were more widely recognized, Scheele had a humble position in a small town, and yet he was still able to make many scientific discoveries.  He preferred his small dwelling to the grandeur of an extravagant house. Scheele turned down several high-paying offers by prestigious European academies.  Frederick the II offered him  a Berlin position, and the English government offered him a generous salary for his work, but Scheele remained at his pharmacy to serve his faithful customers.  Scheele made many discoveries in [[chemistry]] before others who are generally given the credit, and his numerous discoveries have yet to be surpassed.  One of Scheele's most famous discoveries was [[oxygen]] produced as a by-product in a number of experiments in which he heated chemicals during 1771-1772.  Scheele, though, was not the one to name or define oxygen; that job would later be bestowed upon [[ Antoine Lavoisier]].
 +
 
 +
Scheele put substantial effort into learning as much as he could in [[science]].  He would stay up late at night reading different chemical books.  His studies led him to the discovery of [[oxygen]] and [[nitrogen]] in 1772-1773, which he published in his only book, ''Chemische Abhandlung von der Luft und dem Feuer'' (''Chemical Treatise on Air and Fire'') in 1777, losing some fame to [[Joseph Priestley]], who independently discovered oxygen in 1774.  In his book, he also distinguished [[heat transfer]] by [[thermal radiation]] from that by [[convection]] or [[heat conduction|conduction]].  Like many other chemists of his time, Scheele often worked under difficult and even dangerous conditions.  Also, he had a habit of tasting chemicals that he found.  It appears that this was the cause of his premature death at the age of 43; his death symptoms resemble [[mercury poisoning]].
  
 
==Existing theories before Scheele==
 
==Existing theories before Scheele==
By the time he was a teenager, Scheele had learned the dominant theory on gases in the 1770s, the [[phlogiston]] theory. [[Phlogiston]], classified as "matter of fire" stated that any material that was able to burn would release [[phlogiston]] during combustion, and  stops when all the [[phlogiston]] had been released.  When Scheele discovered [[oxygen]] he called it "fire air" because it supported combustion, but he explained oxygen using phlogistical terms because he did not believe that his discovery disproved the [[phlogiston]] theory.  Before Scheele made his discovery of [[oxygen]], he studied air.  Air was thought to be an element that made up the environment in which chemical reactions took place but did not interfere with the reactions.  Scheele's investigation of air enabled him to conclude that air was a mixture of "fire air" and "foul air;" in other words, a mixture of two gases.  He performed numerous experiments in which he burned substances such as saltpeter ([[potassium nitrate]]), [[manganese dioxide]], heavy metal nitrates, [[silver carbonate]] and [[mercuric oxide]].  In all of these experiments, he isolated gas with the same properties; his "fire air," which he believed combined with [[phlogiston]] to be released during heat-releasing reactions.  However, his first publication , ''A Chemical Treatise on Air and Fire'', was not released until [[1777]] at which time both [[Joseph Priestly]] and [[Lavoisier]] had already published their experimental data and conclusions concerning [[oxygen]] and the[[phlogiston]] theory.
+
 
 +
By the time he was a teenager, Scheele had learned the dominant theory on gases in the 1770s, the [[phlogiston]] theory. Phlogiston, classified as "matter of fire" stated that any material that was able to burn would release phlogiston during combustion, and  stops when all the phlogiston had been released.  When Scheele discovered [[oxygen]] he called it "fire air" because it supported combustion, but he explained oxygen using phlogistical terms because he did not believe that his discovery disproved the phlogiston theory.  Before Scheele made his discovery of oxygen, he studied air.  Air was thought to be an element that made up the environment in which chemical reactions took place but did not interfere with the reactions.  Scheele's investigation of air enabled him to conclude that air was a mixture of "fire air" and "foul air;" in other words, a mixture of two gases.  He performed numerous experiments in which he burned substances such as saltpeter ([[potassium nitrate]]), [[manganese dioxide]], heavy metal nitrates, [[silver carbonate]] and [[mercuric oxide]].  In all of these experiments, he isolated gas with the same properties; his "fire air," which he believed combined with phlogiston to be released during heat-releasing reactions.  However, his first publication , ''A Chemical Treatise on Air and Fire'', was not released until 1777 at which time both [[Joseph Priestly]] and [[Lavoisier]] had already published their experimental data and conclusions concerning oxygen and thephlogiston theory.
  
 
==Debunking the theory of phlogiston==
 
==Debunking the theory of phlogiston==
Historians of science no longer question the role of Carl Scheele in the overturning of the [[phlogiston]] theory.  It is generally accepted that he was the first to discover oxygen, among a number of prominent scientists (namely his adversaries [[Antoine Lavoisier]], [[Joseph Black]], and [[Joseph Priestley]]).  In fact, it was determined that Scheele made the discovery three years prior to [[Joseph Priestley]] and at least several before [[Lavoisier]].  [[Joseph Priestley]] relied heavily on Scheele's work, perhaps so much so that he would not have made the discovery of [[oxygen]] on his own.  Correspondence between [[Lavoisier]] and Scheele indicate that Scheele achieved interesting results without the advanced laboratory equipment that [[Lavoisier]] was accustomed to.  Through the studies of [[Lavoisier]], [[Joseph Priestley]], Scheele, and others, [[chemistry]] was made a standardized field with consistent procedures.  Although Scheele was unable to grsp the significance of his discovery of [[oxygen]], his work was essential for the invalidation of the long-held theory of [[phlogiston]].
 
  
Scheele's study of the gas not yet named [[oxygen]] was sparked by a complaint by [[Torbern Olof Bergman]][[Bergman]] informed Scheele that the saltpeter he purchased from Scheele's employer produced red vapors when it came into contact with acid.  Scheele's quick explanation for the vapors led [[Bergman]] to suggest that Scheele analyze the properties of [[manganese dioxide]].  It was through his studies with [[manganese dioxide]] that Scheele developed his concept of "fire air."  He ultimately obtained [[oxygen]] by heating [[mercuric oxide]], [[silver carbonate]], [[magnesium nitrate]], and [[saltpeter]].  Scheele wrote about his findings to [[Lavoisier]] who was able to grasp the significance of the results.
+
Historians of science no longer question the role of Carl Scheele in the overturning of the [[phlogiston]] theory.  It is generally accepted that he was the first to discover oxygen, among a number of prominent scientists—namely, his adversaries [[Antoine Lavoisier]], [[Joseph Black]], and [[Joseph Priestley]]. In fact, it was determined that Scheele made the discovery three years prior to Joseph Priestley and at least several before [[Lavoisier]].  Joseph Priestley relied heavily on Scheele's work, perhaps so much so that he would not have made the discovery of [[oxygen]] on his own. Correspondence between Lavoisier and Scheele indicate that Scheele achieved interesting results without the advanced laboratory equipment that Lavoisier was accustomed to. Through the studies of Lavoisier, Joseph Priestley, Scheele, and others, [[chemistry]] was made a standardized field with consistent proceduresAlthough Scheele was unable to grsp the significance of his discovery of oxygen, his work was essential for the invalidation of the long-held theory of phlogiston.
  
In addition to his joint recognition for the discovery of oxygen, Scheele is argued to have been the first to discover other chemical elements such as [[barium]] (1774), [[manganese]] (1774), [[molybdenum]] ([[1778]]), and [[tungsten]] ([[1781]]), as well as several chemical compounds, including [[citric acid]], [[glycerol]], [[hydrogen cyanide]] (also known, in aqueous solution, as prussic acid), [[hydrogen fluoride]], and [[hydrogen sulfide]]. In addition, he discovered a process similar to [[pasteurization]], along with a means of mass-producing [[phosphorus]] (1769), leading Sweden to become one of the world's leading producers of matches.
+
Scheele's study of the gas not yet named [[oxygen]] was sparked by a complaint by [[Torbern Olof Bergman]][[Bergman]] informed Scheele that the saltpeter he purchased from Scheele's employer produced red vapors when it came into contact with acid.  Scheele's quick explanation for the vapors led Bergman to suggest that Scheele analyze the properties of [[manganese dioxide]].  It was through his studies with manganese dioxide that Scheele developed his concept of "fire air."  He ultimately obtained oxygen by heating [[mercuric oxide]], [[silver carbonate]], [[magnesium nitrate]], and [[saltpeter]]. Scheele wrote about his findings to [[Lavoisier]] who was able to grasp the significance of the results.
  
Scheele made one other very important scientific discovery in [[1774]], arguably more revolutionary than his isolation of [[oxygen]].  He identified [[lime]], [[silica]], and [[iron]], in a specimen of [[pyrolusite]] given to him by his friend, [[Johann Gottlieb Gahn]], but could not identify an additional component.  When he treated the [[pyrolusite]] with [[hydrochloric acid]] over a warm sand bath, a yellow-green gas with a strong odor was produced.  He found that the gas sank to the bottom of an open bottle and was denser than ordinary air.  He also noted that the gas was not soluble in water.  It turned corks a yellow color and removed all color from wet, blue litmus paper and some flowers.  He called this gas with bleaching abilities, "dephlogisticated acid of salt."  Eventually, [[Sir Humphrey Davy]] named the gas [[chlorine]].
+
In addition to his joint recognition for the discovery of oxygen, Scheele is argued to have been the first to discover other chemical elements such as [[barium]] (1774), [[manganese]] (1774), [[molybdenum]] (1778), and [[tungsten]] (1781), as well as several chemical compounds, including [[citric acid]], [[glycerol]], [[hydrogen cyanide]] (also known, in aqueous solution, as prussic acid), [[hydrogen fluoride]], and [[hydrogen sulfide]]. In addition, he discovered a process similar to [[pasteurization]], along with a means of mass-producing [[phosphorus]] (1769), leading Sweden to become one of the world's leading producers of matches.
 +
 
 +
Scheele made one other very important scientific discovery in 1774, arguably more revolutionary than his isolation of [[oxygen]].  He identified [[lime]], [[silica]], and [[iron]], in a specimen of [[pyrolusite]] given to him by his friend, [[Johann Gottlieb Gahn]], but could not identify an additional component.  When he treated the pyrolusite with [[hydrochloric acid]] over a warm sand bath, a yellow-green gas with a strong odor was produced.  He found that the gas sank to the bottom of an open bottle and was denser than ordinary air.  He also noted that the gas was not soluble in water.  It turned corks a yellow color and removed all color from wet, blue litmus paper and some flowers.  He called this gas with bleaching abilities, "dephlogisticated acid of salt."  Eventually, [[Sir Humphrey Davy]] named the gas [[chlorine]].
  
 
==See also==
 
==See also==
 +
 +
* [[Antoine Lavoisier]]
 +
* [[Humphry Davy]]
 +
* [[Joseph Priestley]]
 +
* [[Oxygen]]
 
*[[Scheelite]]
 
*[[Scheelite]]
 
*[[Scheele's Green]]
 
*[[Scheele's Green]]
Line 29: Line 39:
 
*[[Pharmacy]]
 
*[[Pharmacy]]
  
==Bibliography==
+
== References ==
 +
 
 
*{{cite book | author= Abbot, David. | title=Biographical Dictionary of Scientists: Chemists | location= New York | publisher=Peter Bedrick Books | year= 1983 | pages=126-127 }}
 
*{{cite book | author= Abbot, David. | title=Biographical Dictionary of Scientists: Chemists | location= New York | publisher=Peter Bedrick Books | year= 1983 | pages=126-127 }}
 
*{{cite book | author= Bell, Madison S. | title=Lavoisier in the Year One | location=New York | publisher=W.W. Norton & Company, Inc | year= 2005}}
 
*{{cite book | author= Bell, Madison S. | title=Lavoisier in the Year One | location=New York | publisher=W.W. Norton & Company, Inc | year= 2005}}

Revision as of 16:11, 17 July 2007

Carl Wilhelm Scheele
Scheele's house with his pharmacy in Köping.

Carl Wilhelm Scheele (December 9,1742 - May 21, 1786) a German-Swedish pharmaceutical chemist, born in Stralsund, Western Pomerania, Germany (at the time under Swedish rule), was the discoverer of many chemical substances, most notably discovering oxygen before Joseph Priestley and chlorine before Humphry Davy.

Biography

Instead of becoming a merchant like his father, Scheele decided to become a pharmacist. His career as a pharmacist began with his apprenticeship at an apothecary in Gothenburg when he was only fourteen years old. He retained this position for eight years before becoming an apothecary's clerk in Malmö. Then Scheele worked as a pharmacist in Stockholm, from 1770 to 1775 in Upsala, and later in Köping. In 1776, he was able to establish his own pharmacy which he had purchased from the previous owner's widow. The two were married only for Scheele to pass away 48 hours later. Despite his lack of a thorough education, he clearly had an instinctive flair for experimentation. Scheele's limited formal instruction makes his genius surprising. The schooling which Scheele did have was private and it was through this education that he exhibited an inclination to study the art of the pharmacist.

Unlike scientists such as Antoine Lavoisier and Isaac Newton who were more widely recognized, Scheele had a humble position in a small town, and yet he was still able to make many scientific discoveries. He preferred his small dwelling to the grandeur of an extravagant house. Scheele turned down several high-paying offers by prestigious European academies. Frederick the II offered him a Berlin position, and the English government offered him a generous salary for his work, but Scheele remained at his pharmacy to serve his faithful customers. Scheele made many discoveries in chemistry before others who are generally given the credit, and his numerous discoveries have yet to be surpassed. One of Scheele's most famous discoveries was oxygen produced as a by-product in a number of experiments in which he heated chemicals during 1771-1772. Scheele, though, was not the one to name or define oxygen; that job would later be bestowed upon Antoine Lavoisier.

Scheele put substantial effort into learning as much as he could in science. He would stay up late at night reading different chemical books. His studies led him to the discovery of oxygen and nitrogen in 1772-1773, which he published in his only book, Chemische Abhandlung von der Luft und dem Feuer (Chemical Treatise on Air and Fire) in 1777, losing some fame to Joseph Priestley, who independently discovered oxygen in 1774. In his book, he also distinguished heat transfer by thermal radiation from that by convection or conduction. Like many other chemists of his time, Scheele often worked under difficult and even dangerous conditions. Also, he had a habit of tasting chemicals that he found. It appears that this was the cause of his premature death at the age of 43; his death symptoms resemble mercury poisoning.

Existing theories before Scheele

By the time he was a teenager, Scheele had learned the dominant theory on gases in the 1770s, the phlogiston theory. Phlogiston, classified as "matter of fire" stated that any material that was able to burn would release phlogiston during combustion, and stops when all the phlogiston had been released. When Scheele discovered oxygen he called it "fire air" because it supported combustion, but he explained oxygen using phlogistical terms because he did not believe that his discovery disproved the phlogiston theory. Before Scheele made his discovery of oxygen, he studied air. Air was thought to be an element that made up the environment in which chemical reactions took place but did not interfere with the reactions. Scheele's investigation of air enabled him to conclude that air was a mixture of "fire air" and "foul air;" in other words, a mixture of two gases. He performed numerous experiments in which he burned substances such as saltpeter (potassium nitrate), manganese dioxide, heavy metal nitrates, silver carbonate and mercuric oxide. In all of these experiments, he isolated gas with the same properties; his "fire air," which he believed combined with phlogiston to be released during heat-releasing reactions. However, his first publication , A Chemical Treatise on Air and Fire, was not released until 1777 at which time both Joseph Priestly and Lavoisier had already published their experimental data and conclusions concerning oxygen and thephlogiston theory.

Debunking the theory of phlogiston

Historians of science no longer question the role of Carl Scheele in the overturning of the phlogiston theory. It is generally accepted that he was the first to discover oxygen, among a number of prominent scientists—namely, his adversaries Antoine Lavoisier, Joseph Black, and Joseph Priestley. In fact, it was determined that Scheele made the discovery three years prior to Joseph Priestley and at least several before Lavoisier. Joseph Priestley relied heavily on Scheele's work, perhaps so much so that he would not have made the discovery of oxygen on his own. Correspondence between Lavoisier and Scheele indicate that Scheele achieved interesting results without the advanced laboratory equipment that Lavoisier was accustomed to. Through the studies of Lavoisier, Joseph Priestley, Scheele, and others, chemistry was made a standardized field with consistent procedures. Although Scheele was unable to grsp the significance of his discovery of oxygen, his work was essential for the invalidation of the long-held theory of phlogiston.

Scheele's study of the gas not yet named oxygen was sparked by a complaint by Torbern Olof Bergman. Bergman informed Scheele that the saltpeter he purchased from Scheele's employer produced red vapors when it came into contact with acid. Scheele's quick explanation for the vapors led Bergman to suggest that Scheele analyze the properties of manganese dioxide. It was through his studies with manganese dioxide that Scheele developed his concept of "fire air." He ultimately obtained oxygen by heating mercuric oxide, silver carbonate, magnesium nitrate, and saltpeter. Scheele wrote about his findings to Lavoisier who was able to grasp the significance of the results.

In addition to his joint recognition for the discovery of oxygen, Scheele is argued to have been the first to discover other chemical elements such as barium (1774), manganese (1774), molybdenum (1778), and tungsten (1781), as well as several chemical compounds, including citric acid, glycerol, hydrogen cyanide (also known, in aqueous solution, as prussic acid), hydrogen fluoride, and hydrogen sulfide. In addition, he discovered a process similar to pasteurization, along with a means of mass-producing phosphorus (1769), leading Sweden to become one of the world's leading producers of matches.

Scheele made one other very important scientific discovery in 1774, arguably more revolutionary than his isolation of oxygen. He identified lime, silica, and iron, in a specimen of pyrolusite given to him by his friend, Johann Gottlieb Gahn, but could not identify an additional component. When he treated the pyrolusite with hydrochloric acid over a warm sand bath, a yellow-green gas with a strong odor was produced. He found that the gas sank to the bottom of an open bottle and was denser than ordinary air. He also noted that the gas was not soluble in water. It turned corks a yellow color and removed all color from wet, blue litmus paper and some flowers. He called this gas with bleaching abilities, "dephlogisticated acid of salt." Eventually, Sir Humphrey Davy named the gas chlorine.

See also

References
ISBN links support NWE through referral fees

  • Abbot, David. (1983). Biographical Dictionary of Scientists: Chemists. New York: Peter Bedrick Books, 126-127. 
  • Bell, Madison S. (2005). Lavoisier in the Year One. New York: W.W. Norton & Company, Inc. 
  • Cardwell, D.S.L. (1971). From Watt to Clausius: The Rise of Thermodynamics in the Early Industrial Age. Heinemann: London, 60-61. ISBN 0-435-54150-1. 
  • Dobbin, L. (trans.) (1931). Collected Papers of Carl Wilhelm Scheele. 
  • Farber, Eduard ed. (1961). Great Chemists. New York: Interscience Publishers, 255-261. 
  • Greenberg, Arthur. (2000). A Chemical History Tour: Picturing Chemistry from Alchemy to Modern Molecular Science. Hoboken: John Wiley & Sons, Inc., 135-137. 
  • Greenberg, Arthur. (2003). The Art of Chemistry: Myths, Medicines and Materials. Hoboken: John Wiley & Sons, Inc., 161-166. 
  • Schofield, Robert E (2004). The Enlightened Joseph Priestley: A Study of His Life and Work from 1773-1804. Pennsylvania: The Pennsylvania State University Press. 
  • Shectman (2003). Groundbreaking Scientific Experiments, Inventions, and Discoveries of the 18th Century. Connecticut: Greenwood Press. 
  • Sootin, Harry (1960). 12 Pioneers of Science. New York: Vanguard Press. 

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.