Difference between revisions of "Scuba diving" - New World Encyclopedia

From New World Encyclopedia
 
(13 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{claimed}}
+
{{Images OK}}{{submitted}}{{approved}}{{Paid}}{{copyedited}}
 +
[[Image:ScubaDivingShot.jpg|right|thumb|250px|]]
 +
'''Scuba diving''' is the act of swimming underwater while using a self-contained [[Scuba set|breathing apparatus]]. By carrying a source of compressed air, the scuba diver is able to stay [[underwater]] longer than with the simple breath-holding techniques used in [[Snorkeling]] and [[Free-diving]], and is not hindered by air-lines to a remote air source. The scuba diver typically swims underwater by using fins attached to the feet. However, some divers also move around with the assistance of a DPV ([[Diver Propulsion Vehicle]]), commonly referred to as a "scooter," or by using surface-tethered devices called sleds, which are pulled by a boat.
 +
{{toc}}
 +
Scuba diving emphasizes human interaction with the environment, in this case the majesty of the ocean or other bodies of water. It matches exercise with the spirit of exploration and the beauty of nature.
  
'''Scuba diving''' is the act of swimming underwater while using self-contained [[Scuba set| breathing apparatus]]. By carrying a source of [[Scuba set|compressed air]], the scuba diver is able to stay [[underwater]] longer than with the simple breath-holding techniques used in [[Snorkeling]] and [[Free-diving]], and is not hindered by air-lines to a remote air source. The scuba diver typically swims underwater by using fins attached to the feet. However, some divers also move around with the assistance of a DPV ([[Diver Propulsion Vehicle]]), commonly referred to as a "scooter", or by using surface-tethered devices called sleds, which are pulled by a boat.  
+
==History of scuba diving==
 +
The history of scuba diving can be traced back to 1825, when [[William James]] developed a compressed air container that fit around a diver's waist. James developed the design, but no record was made of him using the device. The first recorded dive using a self-contained breathing apparatus was done by [[Charles Condert]]. Condert designed a [[horseshoe]]-shaped air container mounted to a helmet that allowed for constant flow of air to the head device. The diver used the helmet design many times, but died in 1832, because of a broken air tube.  
  
 +
In 1865, two [[Frenchman]] by the names of [[Rouquayrol]] and [[Denayrouse]] used a metal container that allowed the diver to breath air at the same pressure that was in the water. It helped greatly in the development of wreck and sponge diving.
  
==History of Scuba Diving==
+
[[Commandanat]] [[Yves Le Prievr]] of the [[French]] [[Navy]] developed a light weight, self-contained breathing apparatus and also started a diving club in [[Paris]]. Although [[Yves Le Priever]]'s invention helped progress the idea of underwater diving, the machine was still not fully automatic.  
The history of Scuba Diving can be traced back to [[1825]] when [[William James]] developed a compressed air container that fit around a diver's waist.  James developed the design, but no record was made of him using the device. The first recorded dive  using a self-contained breathing appartus was done by [[Charles Condert]]. Condert designed a [[horseshoe]] shaped air container mounted to a helmet that allowed for constant flow of air to the head device. The diver used the helmet design many times diving, but died in [[1832]] because of a broken air tube.  
 
  
In [[1865]], two [[Frenchman]] by the names of [[Rouquayrol]] and [[Denayrouse]] used a metal container that allowed the diver to breath air at the same pressure that was in the water. It helped greatly in the development of wreck and sponge diving.  
+
The first fully automatic aqualung was made by [[Frenchman]] [[Georges Commeinhes]] and had a pressure of 150 bars. In 1942, in what could be considered one of the biggest moments in scuba diving history, [[Jacques Cousteau]] created an aqualung with the help of [[Emile Gagnan]] that was fully automatic as well. It had a inlet and exhaust tube that was fully automatic, and helped pave the way for modern scuba diving.
  
[[Commandanat]] [[Yves Le Prievr]] of the [[French]] [[Navy]] developed a light wait self- contained breathin appartus and also started a diving club in [[Paris]]. Although [[Yves Le Priever]]'s invention helped progress the idea of underwater diving, the machine was still not fully automatic.  
+
==Equipment==
 +
Besides the need for an underwater air chamber, there is other equipment needed to scuba dive successfully.  
  
The first fully automatic aqualung was made by [[Frenchman]] [[Georges Commeinhes]] that had a pressure of 150 bars. In [[1942]], in what could be considered one of the biggest moments in [[Scuba Diving]] history, [[Jacques Cousteau]] created a aqualung with the help of [[Emile Gagnan]] that was fully automatic as well. It has a inlet and exhaust tube that was fully automatic, and helped pave the way for [[Scuba Diving]] today.
+
A mask is needed when diving to ensure clear and constant vision underwater. The required features for the mask include a surface that cannot shatter or scratch, and a waterproof seal that molds around the diver's face. Tempered glass is usually used to guarantee no scratching or shattering, and silicone rubber is used for the waterproof seal. To ensure that no pressure damage occurs during the dive, the mask must cover the [[nose]] and [[ears]] as well.  
  
exhaled into the water. However, [[rebreather]]s (both semi-closed circuit and closed circuit) are also self-contained systems (as opposed to surface-supplied systems) and are therefore classified as scuba.
+
The next piece of equipment that is needed are fins. Fins are worn on the feet and are used to help accelerate the diver more quickly through the water. They are made up of two major parts: The blade, which needs to be firm to promote more power when the diver kicks, and the shoe, which needs to made of softer rubber for comfort.  
  
Although the word '[[Scuba set|SCUBA]]' is an [[acronym]] for "Self Contained Underwater Breathing Apparatus", it has also become acceptable to refer to scuba as '[[scuba equipment]]' or 'scuba apparatus'—an example of the linguistic [[RAS syndrome]].
+
A snorkel is also needed for [[scuba diving]] because it allows the diver to swim near the surface and have a valve for breathing. It is made out of a mouthpiece consisting of rubber and a tube pointed upward that allows one to breath.  
  
==Types of diving==
+
A diver's buoyancy is a very important part of scuba diving. In [[Scuba Diving]], the diver cannot rise to the surface too quickly without risking safety concerns, but at the same time, needs to be able to surface if there is a dramatic emergency such as equipment failure. Increasing the buoyancy of the diver is centered on increasing the weight the diver carriers. The best way to do this is by the use of a wetsuit, or dry-suit, and by wearing a weight belt. In the case of a dry-suit, it does exactly that: Keeps a diver dry. The suit is sealed so that frigid water cannot penetrate the suit. Dry-suit undergarments are often worn under a dry-suit as well, and help to keep layers of air inside the suit for better thermal insulation. Some divers carry an extra gas bottle dedicated to filling the dry suit. Usually this bottle contains [[argon]] gas, because it is a better insulator than air.
[[Image:Divemaster-ready-to-go.jpg|thumb|Divemaster ready to dive Shark and Yolanda reef at Rās Muhammad, [[Sharm el-Sheikh]].]]
 
Scuba diving is still evolving, but general classifications have grown to describe various diving activities. These classifications include, but are not limited to:
 
*[[Commercial diving]]
 
*[[Military diving]]
 
*[[Naval diving]]
 
*[[Police diving]]
 
*[[Professional diving]]
 
*[[Recreational diving]]
 
*[[Diver rescue|Rescue]] & recovery diving
 
*[[Scientific diving]]
 
*[[Technical diving]]
 
**[[Cave diving]]
 
**[[Cavern diving]]
 
**[[Deep diving]]
 
**[[Ice diving]]
 
**[[Wreck diving]]
 
  
Reasons for diving may include:
+
Dry-suits fall into two main categoriesneoprene and membrane; both systems have their good and bad points but generally the difference is:
<br clear=all>
+
*''Membrane:'' High level of diver maneuverability due to the thinness of the material, however that also means that heavy weight under-suit is required if diving in cooler water.
{| class = "prettytable"
+
*''Neoprene:'' Low level of diver maneuverability due to the material being considerably thicker than membrane material (even when dealing with compressed neoprene) however the neoprene provides a higher level of insulation for the diver.
|-
 
!Type of diving
 
!Classification
 
|-
 
|[[aquarium]] maintenance in large [[public aquarium]]s
 
|[[commercial diving|commercial]], [[scientific diving|scientific]]
 
|-
 
|[[boat]] and [[ship]] inspection, cleaning and maintenance
 
|commercial, [[naval diving|naval]]
 
|-
 
|[[cave diving]]
 
|[[technical diving|technical]], [[recreational diving|recreational]]
 
|-
 
|civil engineering in [[harbor]]s, [[water]] supply, and [[drainage]] systems
 
|commercial
 
|-
 
|[[crude oil]] industry and other [[offshore construction]] and maintenance
 
|commercial
 
|-
 
|[[demolition]] and [[salvage]] of [[ship wreck]]s
 
|commercial, naval
 
|-
 
|[[diver training]] for reward
 
|[[professional diving|professional]]
 
|-
 
|[[fish farm]] maintenance
 
|commercial
 
|-
 
|[[fishing industry|fishing]], e.g. for [[abalone]]s, [[crab]]s, [[lobster]]s, [[pearl]]s, [[scallop]]s, [[sea crayfish]], [[sponge]]s
 
|commercial
 
|-
 
|[[frogman]], [[manned torpedo]]
 
|[[military diving|military]]
 
|-
 
|[[harbor]] clearance and maintenance
 
|commercial, military
 
|-
 
|[[media diving]]: making television programs, etc.
 
|professional
 
|-
 
|[[naval mine|mine]] clearance and [[bomb disposal]], disposing of [[unexploded ordnance]]
 
||military, naval
 
|-
 
|pleasure, leisure, sport
 
|recreational
 
|-
 
|[[underwater photography]]
 
|professional, recreational
 
|-
 
|policing diving to investigate or arrest unauthorized divers
 
|[[police diving|police]], military, naval
 
|-
 
|search and recovery diving
 
|commercial
 
|-
 
|[[search and rescue]] diving
 
|police
 
|-
 
|[[spear fishing]]
 
|professional (occasionally), recreational
 
|-
 
|stealthy [[infiltration]]
 
|military
 
|-
 
|[[marine biology]]
 
|scientific, recreational
 
|-
 
|[[underwater]] [[tourism]]
 
|recreational
 
|-
 
|[[underwater archaeology]] ([[shipwreck]]s; [[harbor]]s, and [[building]]s)
 
|scientific, recreational
 
|}
 
  
Some professional, commercial, and police diving activities are sometimes performed by [[volunteer]] divers.
+
A wetsuit or dry suit can also keep a diver warm in cold water. The weight belt must be placed in a way that allows for quick release in case of an emergency in which the diver needs to get to the surface.
  
Within recreational diving there are those who are considered [[professional diving|professional divers]], because they maintain a [[professional]] standard of training and skills and may need to carry [[professional]] [[liability insurance]].
+
The famous [[Aqualung]] that was first created by [[Jacques Cousteau]] and [[Emile Gaganan]] consist of three major parts: Air cylinder, harness, and regulator. The cylinder is made out of steel or aluminum, and carries the oxygen supply. The regulator is the device that controls the pressure to be the same amount as the pressure in the water. The harness is the way in which the device is carried on the diver's back.
  
Some consider technical diving to be a subset of recreational diving, but others separate it out due to the extensively different training equipment and knowledge needed for technical dives.
+
The most commonly used [[scuba set]] today is the "single-hose" open circuit 2-stage [[diving regulator]], coupled to a single pressurized gas cylinder, with the first stage on the cylinder and the second stage at the [[mouthpiece]]. This arrangement differs from [[Emile Gagnan]]'s and [[Jacques Cousteau]]'s original 1942 "twin-hose" design, in which the cylinder's pressure was reduced to ambient pressure in one, two, or three stages which were all on the cylinder. The "single-hose" system has significant advantages over the original system.
 
Public safety diving and military diving may be classified as commercial diving because they make a living from their pursuit of diving; however, public safety divers ([[police]] or [[rescue]]) and military divers have a different mission from the typical commercial diver. Scientific diving is used by marine scientists (including diving marine biologists and [[Underwater archaeology| underwater archaeologists]]), as a tool for collecting their research data.
 
  
==Diving Issues==
+
===Re-breather===
This section looks at some of the [[physiological]] issues posed by diving.
+
Less common, but becoming increasingly available, are closed and semi-closed [[re-breathers]]. Open-circuit sets vent off all exhaled gases, but re-breathers reprocess each exhaled breath for re-use by removing the [[carbon dioxide]] buildup and replacing the oxygen used by the diver. Re-breathers release few or no gas bubbles into the water, and use much less oxygen per hour because exhaled oxygen is recovered; this has advantages for research, [[military|frogman]], photography, and other applications. Modern re-breathers are more complex and more expensive than sport open-circuit scuba, and need special training and maintenance to safely use.  
  
===Breathing underwater===
+
===Gas mixtures===
:''For more information, see [[diving regulator]].''
+
For some diving, gas mixtures other than normal atmospheric air (21 percent [[oxygen]], 78 percent [[nitrogen]], 1 percent other) can be used, so long as the diver is properly trained in their use. The most commonly used mixture is [[Enriched Air Nitrox]], which is air with extra oxygen, often with 32 or 36 percent oxygen, and thus less nitrogen, reducing the effect of [[decompression sickness]] and [[nitrogen narcosis]].
Water normally contains dissolved [[oxygen]] from which [[fish]] and other aquatic animals extract all their required oxygen as the water flows past their [[gills]]. Humans lack gills and do not otherwise have the capacity to breathe [[underwater]] unaided by external devices.
 
  
Early diving experimenters quickly discovered it is not enough simply to supply [[air]] in order to breathe comfortably underwater. As one descends, in addition to the normal atmospheric pressure, water exerts increasing [[pressure]] on the chest and [[lungs]] — approximately 1 [[Bar (unit)|bar]] or 14.7 [[psi]] for every 33 [[Foot (unit of length)|feet]] or 10 [[meters]] of depth — so the pressure of the inhaled breath must exactly counter the surrounding or ambient pressure in order to inflate the lungs.
+
Several other common gas mixtures are in use, and all need specialized training. For example, oxygen with [[helium]] and a reduced percentage of [[nitrogen]] is known as [[trimix]].
  
By always providing the [[breathing gas]] at ambient pressure, modern [[diving regulator|demand valve regulators]] ensure the diver can inhale and exhale naturally and virtually effortlessly, regardless of depth.
+
In cases of [[technical diving|technical dives]] more than one cylinder may be carried, containing a different gas mixture for a distinct phase of the dive, typically designated as "travel," "bottom," and "decompression." These different gas mixtures may be used to extend bottom time, reduce inert gas narcotic effects, and reduce decompression times.
  
Because the diver's nose and eyes covered by a [[diving mask]]; the diver cannot breathe in through the nose, except when wearing a [[full face diving mask]]. However, inhaling from a regulator's [[mouthpiece (scuba)|mouthpiece]] becomes second nature very quickly.
+
== Important safety issues==
[[Image:Alpha_Dive_Flag.svg|left|thumb|150px|The [[International maritime signal flags|"Alfa" flag]] -
+
There are important [[physiological]] issues posed by diving.
Designates a vessel engaged in underwater operations with restricted maneuverability <ref>http://www.navcen.uscg.gov/mwv/navrules/Rules/Rule27.htm</ref>]]
 
  
For more information about diving regulators, see [[Diving regulator]].
+
===Breathing underwater===
  
===Open-circuit===
+
Water normally contains dissolved [[oxygen]] from which [[fish]] and other aquatic animals extract all their required oxygen as the water flows past their [[gills]]. Humans lack gills and do not otherwise have the capacity to breathe [[underwater]] unaided by external devices.
The most commonly used [[scuba set]] today is the "single-hose" open circuit 2-stage [[diving regulator]], coupled to a single pressurized gas cylinder, with the first stage on the cylinder and the second stage at the [[mouthpiece]]. This arrangement differs from [[Emile Gagnan]]'s and [[Jacques Cousteau]]'s original 1942 "twin-hose" design, known as the [[Aqua-lung]], in which the cylinder's pressure was reduced to ambient pressure in one or two or three stages which were all on the cylinder. The "single-hose" system has significant advantages over the original system.
 
[[Image:Diver Down flag.svg|right|thumb|200px|The diver down flag - Designates a diver is in the water]]
 
  
In the "single-hose" two-stage design, the first stage regulator reduces the cylinder pressure of about 200 bar (3000 psi) to an intermediate level of about 10 bar (145 psi)  The second stage [[Diving regulator#Demand valve 2|demand valve]] regulator, connected via a low pressure hose to the first stage, delivers the breathing gas at the correct ambient pressure to the diver's mouth and lungs. The diver's exhaled gases are exhausted directly to the environment as waste. The first stage typically has at least one outlet delivering breathing gas at unreduced tank pressure. This is connected to the diver's pressure gauge or computer, in order to show how much breathing gas remains.
+
Early diving experimenters quickly discovered it is not enough simply to supply [[air]] in order to breathe comfortably underwater. As one descends, in addition to the normal atmospheric pressure, water exerts increasing [[pressure]] on the chest and [[lungs]]&mdash;approximately 1 [[Bar (unit)|bar]] or 14.7 [[psi]] for every 33 [[Foot (unit of length)|feet]] or 10 [[meters]] of depth&mdash;so the pressure of the inhaled breath must exactly counter the surrounding or ambient pressure in order to inflate the lungs.
  
===Rebreather===
+
By always providing the [[breathing gas]] at ambient pressure, modern [[diving regulator|demand valve regulators]] ensure the diver can inhale and exhale naturally and virtually effortlessly, regardless of depth.
Less common, but becoming increasingly available, are closed and semi-closed [[rebreathers]]. Open-circuit sets vent off all exhaled gases, but rebreathers reprocess each exhaled breath for re-use by removing the [[carbon dioxide]] buildup and replacing the oxygen used by the diver. Rebreathers release few or no gas bubbles into the water, and use much less oxygen per hour because exhaled oxygen is recovered; this has advantages for research, [[military|frogman]], photography, and other applications. Modern rebreathers are more complex and more expensive than sport open-circuit scuba, and need special training and maintenance to safely use.  
 
  
===Gas mixtures===
+
Because the diver's nose and eyes covered by a [[diving mask]], the diver cannot breathe in through the nose, except when wearing a [[full face diving mask]]. However, inhaling from a regulator's [[mouthpiece (scuba)|mouthpiece]] becomes second nature very quickly.
For some diving, gas mixtures other than normal atmospheric air (21% [[oxygen]], 78% [[nitrogen]], 1% other) can be used, so long as the diver is properly trained in their use. The most commonly used mixture is [[Enriched Air Nitrox]], which is air with extra oxygen, often with 32% or 36% oxygen, and thus less nitrogen, reducing the effect of [[decompression sickness]] and [[nitrogen narcosis]].
+
[[Image:Alpha_Dive_Flag.svg|left|thumb|150px|The [[International maritime signal flags|"Alfa" flag]] -
 
+
Designates a vessel engaged in underwater operations with restricted maneuverability.<ref>www.navcen.uscg.gov, [http://www.navcen.uscg.gov/mwv/navrules/Rules/Rule27.htm Vessel Not Under Command] Retrieved December 22, 2007.</ref>]]
Several other common gas mixtures are in use, and all need specialized training. Oxygen with [[helium]] and a reduced percentage of [[nitrogen]] is known as [[trimix]], for example.
 
 
 
In cases of [[technical diving|technical dives]] more than one cylinder may be carried, containing a different gas mixture for a distinct phase of the dive, typically designated as Travel, Bottom, and Decompression. These different gas mixtures may be used to extend bottom time, reduce inert gas narcotic effects, and reduce decompression times.
 
  
 
===Injuries due to changes in air pressure===   
 
===Injuries due to changes in air pressure===   
:''For a full list, see [[Diving hazards and precautions]]''
+
Divers must avoid injuries caused by changes in air pressure. The weight of the water column above the diver causes an increase in air pressure in any compressible material ([[wetsuit]], [[lung|lungs]], [[sinus]]) in proportion to depth, in the same way that atmospheric air causes a pressure of 14.7 lbs per square inch at sea level. Pressure injuries are called [[barotrauma]] and can be quite painful, in severe cases causing a ruptured eardrum or damage to the sinuses. To avoid them, the diver equalizes the pressure in all air spaces with the surrounding water pressure when changing depth. The middle ear and sinus are equalized using one of two techniques.
  
Divers must avoid injuries caused by changes in air pressure. The weight of the water column above the diver causes an increase in air pressure in any compressible material ([[wetsuit]], [[lung|lungs]], [[sinus]]) in proportion to depth, in the same way that atmospheric air causes a pressure of 14.7 lbs per square inch at sea level.  Pressure injuries are called [[barotrauma]] and can be quite painful, in severe cases causing a ruptured eardrum or damage to the sinuses. To avoid them, the diver equalizes the pressure in all air spaces with the surrounding water pressure when changing depth. The middle ear and sinus are equalized using one of two techniques.
+
The first technique is known as the "[[Valsalva maneuver]]," which involves pinching the nose and gently attempting to exhale through it. The second technique is known as the "[[Frenzel maneuver]]," which involves using the throat muscles in a swallowing motion. This maneuver is more difficult to master than the Valsalva maneuver.
  
The first technique is known as the "[[Valsalva maneuver]]", which involves pinching the nose and gently attempting to exhale through it.  The second technique is known as the "[[Frenzel maneuver]]", which involves using the throat muscles in a swallowing motion. This maneuver is more difficult to master than the Valsalva maneuver.
+
The mask is equalized by periodically exhaling through the nose. If a dry-suit is worn, it too must be equalized by inflation and deflation, similar to a [[buoyancy compensator]].
 
 
The mask is equalized by periodically exhaling through the nose. If a drysuit is worn, it too must be equalized by inflation and deflation, similar to a [[buoyancy compensator]].
 
  
 
===Effects of breathing high pressure gas===   
 
===Effects of breathing high pressure gas===   
 
====Decompression sickness====   
 
====Decompression sickness====   
The diver must avoid the formation of gas bubbles in the body, called [[decompression sickness]] or 'the bends', by releasing the water pressure on the body slowly at the end of the dive and allowing gases trapped in the bloodstream to gradually break solution and leave the body, called "off-gassing." This is done by making safety stops or [[decompression stops]] and ascending slowly using [[dive computer]]s or [[decompression tables]] for guidance. Decompression sickness must be treated promptly, typically in a [[recompression chamber]]. Administering enriched-oxygen breathing gas or pure [[oxygen]] to a decompression sickness stricken diver on the surface is a good form of [[first aid]] for decompression sickness, although fatality or permanent disability may still occur.
+
The diver must avoid the formation of gas bubbles in the body, called [[decompression sickness]] or "the bends," by releasing the water pressure on the body slowly at the end of the dive and allowing gases trapped in the bloodstream to gradually break solution and leave the body, called "off-gassing." This is done by making safety stops or [[decompression stops]] and ascending slowly using [[dive computer]]s or [[decompression tables]] for guidance. Decompression sickness must be treated promptly, typically in a [[recompression chamber]]. Administering enriched-oxygen breathing gas or pure [[oxygen]] to a decompression sickness stricken diver on the surface is a good form of [[first aid]] for decompression sickness, although fatality or permanent disability may still occur.
  
 
====Nitrogen narcosis====
 
====Nitrogen narcosis====
[[Nitrogen narcosis]] or inert gas narcosis is a reversible alteration in consciousness producing a state similar to alcohol intoxication in divers who breathe high pressure gas at depth. The mechanism is similar to that of nitrous oxide, or "laughing gas," administered as anesthesia. Being "narced" can impair judgment and make diving very dangerous. Narcosis starts to affect the diver at 66 feet (20 metres), or 3 atmospheres of pressure. At 66 feet, Narcosis manifests itself as slight giddiness. The effects increase drastically with the increase in depth. [[Jacques Cousteau]] famously described it as the "rapture of the deep". Nitrogen narcosis occurs quickly and the symptoms typically disappear during the ascent, so that divers often fail to realize they were ever affected. It affects individual divers at varying depths and conditions, and can even vary from dive to dive under identical conditions. However, diving with [[trimix]] or heliox prevents narcosis from occurring.
+
[[Nitrogen narcosis]] or inert gas narcosis is a reversible alteration in consciousness producing a state similar to alcohol intoxication in divers who breathe high pressure gas at depth. The mechanism is similar to that of nitrous oxide, or "laughing gas," administered as anesthesia. Being "narced" can impair judgment and make diving very dangerous. Narcosis starts to affect the diver at 66 feet (20 meters), or 3 atmospheres of pressure. At 66 feet, Narcosis manifests itself as slight giddiness. The effects increase drastically with the increase in depth. [[Jacques Cousteau]] famously described it as the "rapture of the deep." Nitrogen narcosis occurs quickly and the symptoms typically disappear during the ascent, so that divers often fail to realize they were ever affected. It affects individual divers at varying depths and conditions, and can even vary from dive to dive under identical conditions. However, diving with [[trimix]] or heliox prevents narcosis from occurring.
  
 
====Oxygen toxicity====
 
====Oxygen toxicity====
[[Oxygen toxicity]] occurs when oxygen in the body exceeds a safe "partial pressure" (PPO<sub>2</sub>). In extreme cases it affects the central nervous system and causes a [[seizure]], which can result in the diver spitting out his regulator and drowning. Oxygen toxicity is preventable provided one never exceeds the established maximum depth of a given breathing gas. For deep dives, (generally past 130 feet / 39 meters) "hypoxic blends" containing a lower percentage of oxygen than atmospheric air are used. For more information, see [[Oxygen toxicity]].
+
[[Oxygen toxicity]] occurs when oxygen in the body exceeds a safe "partial pressure" (PPO<sub>2</sub>). In extreme cases it affects the central nervous system and causes a [[seizure]], which can result in the diver spitting out his regulator and drowning. Oxygen toxicity is preventable provided one never exceeds the established maximum depth of a given breathing gas. For deep dives, (generally past 130 feet/39 meters) "hypoxic blends" containing a lower percentage of oxygen than atmospheric air are used.  
  
===Refraction and [[underwater vision]]===
+
===Refraction and underwater vision===
 
[[Image:Full_face_diving_mask_-_ocean_reef.JPG|thumb|right|A diver wearing an Ocean Reef full face mask]]
 
[[Image:Full_face_diving_mask_-_ocean_reef.JPG|thumb|right|A diver wearing an Ocean Reef full face mask]]
 
Water has a higher [[refractive index]] than air; it's similar to that of the [[cornea]] of the [[eye]]. Light entering the cornea from water is hardly refracted at all, leaving only the eye's [[crystalline lens]] to focus light. This leads to very severe [[hypermetropia]]. People with severe [[myopia]], therefore, can see better underwater without a mask than normal-sighted people.
 
Water has a higher [[refractive index]] than air; it's similar to that of the [[cornea]] of the [[eye]]. Light entering the cornea from water is hardly refracted at all, leaving only the eye's [[crystalline lens]] to focus light. This leads to very severe [[hypermetropia]]. People with severe [[myopia]], therefore, can see better underwater without a mask than normal-sighted people.
  
[[Diving mask]]s and [[diving helmet]]s and [[fullface mask]]s solve this problem by creating an air space in front of the diver's eyes. The [[refraction error]] created by the water is mostly corrected as the light travels from water to air through a flat lens, except that objects appear approximately [[underwater vision|34% bigger and 25% closer]] in salt water than they actually are. Therefore total field-of-view is significantly reduced and eye-hand coordination must be adjusted.
+
[[Diving mask]]s and [[diving helmet]]s and [[fullface mask]]s solve this problem by creating an air space in front of the diver's eyes. The [[refraction error]] created by the water is mostly corrected as the light travels from water to air through a flat lens, except that objects appear approximately [[underwater vision|34 percent bigger and 25 percent closer]] in salt water than they actually are. Therefore, total field-of-view is significantly reduced and eye-hand coordination must be adjusted.
  
(This affects underwater photography: a camera seeing through a flat window in its casing is affected the same as its user's eye seeing through a flat mask window, and so its user must focus for the apparent distance to target, not for the real distance.)
+
(This affects underwater [[photography]]: A camera seeing through a flat window in its casing is affected the same as its user's eye seeing through a flat mask window, and so its user must focus for the apparent distance to target, not for the real distance.)
  
 
Divers who need corrective lenses to see clearly outside the water would normally need the same prescription while wearing a mask. Generic and custom corrective lenses are available for some two-window masks. Custom lenses can be bonded onto masks that have a single front window.
 
Divers who need corrective lenses to see clearly outside the water would normally need the same prescription while wearing a mask. Generic and custom corrective lenses are available for some two-window masks. Custom lenses can be bonded onto masks that have a single front window.
Line 189: Line 94:
  
 
===Controlling buoyancy underwater===  
 
===Controlling buoyancy underwater===  
[[Image:7008_aquaimages.jpg|thumb|Diver under the Salt Pier in [[Bonaire]].]]
+
 
 
To dive safely, divers need to be able to control their rate of descent and ascent in the water. Ignoring other forces such as water currents and swimming, the diver's overall [[buoyancy]] determines whether he ascends or descends. Equipment such as the [[diving weighting system]]s, [[diving suit]]s (Wet, Dry & Semi-dry suits are used depending on the water temperature) and [[buoyancy compensator]]s can be used to adjust the overall buoyancy. When divers want to remain at constant depth, they try to achieve neutral buoyancy. This minimizes gas consumption caused by swimming to maintain depth.
 
To dive safely, divers need to be able to control their rate of descent and ascent in the water. Ignoring other forces such as water currents and swimming, the diver's overall [[buoyancy]] determines whether he ascends or descends. Equipment such as the [[diving weighting system]]s, [[diving suit]]s (Wet, Dry & Semi-dry suits are used depending on the water temperature) and [[buoyancy compensator]]s can be used to adjust the overall buoyancy. When divers want to remain at constant depth, they try to achieve neutral buoyancy. This minimizes gas consumption caused by swimming to maintain depth.
  
The downward force on the diver is the [[weight]] of the diver and his equipment minus the weight of the same [[volume]] of the liquid that he is immersed in; if the result is [[negative]], that force is upwards. Diving weighting systems can be used to reduce the diver's weight and cause an ascent in an emergency. Diving suits, mostly being made of compressible materials, shrink as the diver descends, and expand as the diver ascends, creating unwanted buoyancy changes. The diver can inject air into some diving suits to counteract this effect and [[barotrauma|squeeze]]. Buoyancy compensators allow easy and fine adjustments in the diver's overall volume and therefore buoyancy. For [[scuba set|open circuit]] divers, changes in the diver's lung volume can be used to adjust buoyancy.
+
The downward force on the diver is the [[weight]] of the diver and his equipment minus the weight of the same [[volume]] of the liquid that he is immersed in; if the result is [[negative]], that force is upwards. Diving weighting systems can be used to reduce the diver's weight and cause an ascent in an emergency. Diving suits, mostly being made of compressible materials, shrink as the diver descends, and expand as the diver ascends, creating unwanted buoyancy changes. The diver can inject air into some diving suits to counteract this effect and [[barotrauma|squeeze]]. Buoyancy compensator allow easy and fine adjustments in the diver's overall volume and therefore buoyancy. For [[scuba set|open circuit]] divers, changes in the diver's lung volume can be used to adjust buoyancy.
 
 
===Avoiding losing body heat===
 
Water [[thermal conductivity|conducts]] [[heat]] from the diver 25 times[http://hyperphysics.phy-astr.gsu.edu/hbase/tables/thrcn.html] better than air, which can lead to [[hypothermia]] even in mild water temperatures. Symptoms of hypothermia include impaired judgment and dexterity, which can quickly become deadly in an aquatic environment. In all but the warmest waters, divers need the [[thermal insulation]] provided by [[wetsuit]]s or [[drysuit]]s.
 
 
 
In the case of a wetsuit, the suit is designed to minimize heat loss. Wetsuits are generally made of [[neoprene]] that has small gas cells, generally nitrogen, trapped in it during the manufacturing process. The poor thermal conductivity of this expanded cell neoprene means that wetsuits reduce loss of body heat by conduction to the surrounding water. The neoprene in this case acts as an insulator.
 
 
 
The second way in which wetsuits reduce heat loss is to trap a thin layer of water between the diver's skin and the insulating suit itself. Body heat then heats the trapped water. Provided the wetsuit is reasonably well-sealed at all openings (neck, wrists, legs), this reduces water flow over the surface of the skin, reducing loss of body heat by convection, and therefore keeps the diver warm (this is the principle employed in the use of a "Semi-Dry")
 
  
 
[[Image:wetsuit0806.jpg|thumb|right|Spring Suit and Steamer.]]
 
[[Image:wetsuit0806.jpg|thumb|right|Spring Suit and Steamer.]]
In the case of a drysuit, it does exactly that: keeps a diver dry. The suit is sealed so that frigid water cannot penetrate the suit. Drysuit undergarments are often worn under a drysuit as well, and help to keep layers of air inside the suit for better thermal insulation. Some divers carry an extra gas bottle dedicated to filling the dry suit. Usually this bottle contains [[argon]] gas, because of its better insulation as compared with air.
 
 
Drysuits fall into two main categories neoprene and membrane; both systems have their good and bad points but generally they can be reduced to:
 
*''Membrane'': high level of diver maneuverability due to the thinness of the material, however that also means that heavy weight undersuit is required if diving in cooler water.
 
*''Neoprene'': low level of diver maneuverability due to the material being considerably thicker than membrane material (even when dealing with compressed neoprene) however the neoprene provides a higher level of insulation for the diver.
 
  
 
===Avoiding skin cuts and grazes===
 
===Avoiding skin cuts and grazes===
[[Diving suit]]s also help prevent the diver's skin being damaged by rough or sharp underwater objects, marine animals or coral.
+
[[Diving suit]]s also help prevent the diver's skin being damaged by rough or sharp underwater objects, marine animals, or coral.
  
 
===Diving longer and deeper safely===
 
===Diving longer and deeper safely===
 
There are a number of techniques to increase the diver's ability to dive deeper and longer:
 
There are a number of techniques to increase the diver's ability to dive deeper and longer:
* [[technical diving]] - diving deeper than 40 metres (130 feet) and/or using mixed gases.
+
* [[Technical diving]]--diving deeper than 40 meters (130 feet) and/or using mixed gases.
* [[surface supplied diving]] - use of umbilical gas supply and [[diving helmet]]s.
+
* [[Surface supplied diving]]--use of umbilical gas supply and [[diving helmet]]s.
* [[saturation diving]] - long-term use of underwater habitats under pressure and a gradual release of pressure over several days in a [[decompression chamber]] at the end of a dive
+
* [[Saturation diving]]--long-term use of underwater habitats under pressure and a gradual release of pressure over several days in a [[decompression chamber]] at the end of a dive
  
===Being mobile underwater===
+
===Underwater mobility===
 
The diver needs to be mobile underwater. Streamlining dive gear will reduce drag and improve mobility. Personal mobility is enhanced by [[swimfin]]s and [[Diver Propulsion Vehicle]]s. Other equipment to improve mobility includes [[diving bell]]s and [[diving shot]]s.
 
The diver needs to be mobile underwater. Streamlining dive gear will reduce drag and improve mobility. Personal mobility is enhanced by [[swimfin]]s and [[Diver Propulsion Vehicle]]s. Other equipment to improve mobility includes [[diving bell]]s and [[diving shot]]s.
  
Line 223: Line 116:
 
{{main|List of diver training organizations}}
 
{{main|List of diver training organizations}}
  
Recreational scuba diving does not have a centralized certifying or regulatory agency, and is mostly self regulated. There are, however, several large diving organizations that train and certify divers and dive instructors, and many diving related sales and rental outlets require proof of diver certification from one of these organizations prior to selling or renting certain diving products or services.
+
Recreational scuba diving does not have a centralized certifying or regulatory agency, and is mostly self-regulated. There are, however, several large diving organizations that train and certify divers and dive instructors, and many diving related sales and rental outlets require proof of diver certification from one of these organizations prior to selling or renting certain diving products or services.
  
 
The largest international certification agencies that are currently recognized by most diving outlets for diver certification include:
 
The largest international certification agencies that are currently recognized by most diving outlets for diver certification include:
  
<!-- Note to editors: Please do not add any agencies to this list that are not the most important internationally recognized recreational certification agencies. You may want to consider adding to [[List of diver training organizations]]. Thank you. —>
+
*American Canadian Underwater Certifications (ACUC) (formerly Association of Canadian Underwater Councils)--originated in [[Canada]] in 1969 and expanded internationally in 1984--certifications recognized worldwide.
 
+
*[[British Sub Aqua Club|British Sub Aqua Club (BSAC)]]--based in the [[United Kingdom]], mostly for UK divers and clubs
*[http://www.acuc.org/ American Canadian Underwater Certifications (ACUC)] (formerly Association of Canadian Underwater Councils) - originated in [[Canada]] in 1969 and expanded internationally in 1984 - certifications recognized worldwide.
+
*[http://www.cedip.org/ European Committee of Professional Diving Instructors (CEDIP)] based in Europe since 1992 but international certifications are recognized all over the world.  
*[[British Sub Aqua Club|British Sub Aqua Club (BSAC)]] - based in the [[United Kingdom]], mostly for UK divers and clubs
 
*[http://www.cedip.org/ European Committee of Professional Diving Instructors (CEDIP)] based in Europe since 1992 but international certifications are recognized all over the world. [http://fr.wikipedia.org/wiki/Comit%C3%A9_europ%C3%A9en_des_instructeurs_de_plong%C3%A9e_professionnels (see Cedip on French Wiki pages)]
 
 
*[[CMAS|Confédération Mondiale des Activités Subaquatiques (CMAS)]], the World Underwater Federation
 
*[[CMAS|Confédération Mondiale des Activités Subaquatiques (CMAS)]], the World Underwater Federation
*[[National Association of Underwater Instructors|National Association of Underwater Instructors (NAUI)]] - based in the [[USA]]
+
*[[National Association of Underwater Instructors|National Association of Underwater Instructors (NAUI)]]--based in the U.S.
*[[Professional Diving Instructors Corporation|Professional Diving Instructors Corporation (PDIC)]] - based in the [[USA]]
+
*[[Professional Diving Instructors Corporation|Professional Diving Instructors Corporation (PDIC)]]--based in the U.S.
*[[Professional Association of Diving Instructors|Professional Association of Diving Instructors (PADI)]] - based in the [[USA]], largest recreational dive training and certification organization in the world
+
*[[Professional Association of Diving Instructors|Professional Association of Diving Instructors (PADI)]]--based in the U.S., largest recreational dive training and certification organization in the world
 
*[http://www.tdisdi.com International Training SDI, TDI & ERDi]
 
*[http://www.tdisdi.com International Training SDI, TDI & ERDi]
*[[Scuba Schools International|Scuba Schools International (SSI)]] - based in the [[USA]]
+
*[[Scuba Schools International|Scuba Schools International (SSI)]]--based in the U.S.
*[http://www.ymcascuba.org/ YMCA scuba] - based in the [[USA]], part of [[Young Men's Christian Association|Young Men's Christian Association (YMCA)]], a Christian related organization (open to all faiths, ages and genders despite the historic name)
+
*[http://www.ymcascuba.org/ YMCA scuba]--based in the U.S., part of [[Young Men's Christian Association|Young Men's Christian Association (YMCA)]], a Christian related organization (open to all faiths, ages and genders despite the historic name)
 
 
<!-- Note to editors: Please do not add any agencies to this list that are not the most important internationally recognized recreational certification agencies. You may want to consider adding to [[List of diver training organizations]]. Thank you. —>
 
  
==See also==
 
 
[[image:Bonaire_1000_steps.jpg|thumb|A scuba diver approaching the "1,000 Steps" dive site in [[Bonaire]].]]
 
[[image:Bonaire_1000_steps.jpg|thumb|A scuba diver approaching the "1,000 Steps" dive site in [[Bonaire]].]]
* [[Altitude diving]]
 
* [[Aqua-lung]]
 
* [[Decompression sickness]]
 
* [[Diving equipment]]
 
* [[Diver training]]
 
* [[Diving activities]]
 
* [[Diving hazards and precautions]]
 
* [[Diving locations]]
 
* [[Diving physics]]
 
* [[Diving signal]]
 
* [[Diving Suit]]
 
* [[Drift diving]]
 
* [[Sea Hunt]]
 
* [[Snorkeling]]
 
* [[Snorkeling locations]]
 
* [[Snuba]]
 
* [[Technical diving]]
 
* [[Timeline of underwater technology]]
 
* [[Underwater photography]]
 
* [[Underwater videography]]
 
* [[Wreck diving]]
 
* [[Like-A-Fish]]: A new breathing apparatus that will allow breathing underwater without compressed air (or other breathing gas) tanks.
 
 
[[Image:Scuba-diving.jpg|200px|thumb|right|Scuba diving, grouped]]
 
[[Image:Scuba-diving.jpg|200px|thumb|right|Scuba diving, grouped]]
  
==Sources==
+
==Notes==
* The Diving Manual, BSAC, ISBN 0-9538919-2-5
+
<references/>
* Dive Leading, BSAC, ISBN 0-9538919-4-1
 
* The Club 1953-2003, BSAC, ISBN 0-9538919-5-X
 
* [http://www.deep-six.com/page50.htm Free Scuba textbook by George D. Campbell, III called Diving With Deep-Six]
 
  
{{Reflist}}
+
==References==
 +
* Barrett, Norman S.; ''Scuba Diving''. London: F. Watts, 1988. ISBN 9780863136825
 +
* BSAC. ''The Diving Manual.'' ISBN 0-9538919-2-5
 +
* BSAC. ''Dive Leading.'' ISBN 0-9538919-4-1
 +
* BSAC. ''The Club 1953-2003.'' ISBN 0-9538919-5-X
 +
* Campbell, George D., III. [http://www.deep-six.com/page50.htm Diving With Deep-Six.] Retrieved December 22, 2007.
 +
* Halls, Monty. ''Scuba Diving''. New York: DK Pub., 2006. ISBN 9780756619497
  
==External links==
 
<!--===========================({{NoMoreLinks}})===============================—>
 
<!--| DO NOT ADD MORE LINKS TO THIS ARTICLE. WIKIPEDIA IS NOT A COLLECTION OF |—>
 
<!--| LINKS. If you think that your link might be useful, do not add it here, |—>
 
<!--| but put it on this article's discussion page first or submit your link  |—>
 
<!--| to the appropriate category at the Open Directory Project (www.dmoz.org)|—>
 
<!--| and link back to that category using the {{dmoz}} template.            |—>
 
<!--|                                                                        |—>
 
<!--|          Links that have not been verified WILL BE DELETED.            |—>
 
<!--|  See [[Wikipedia:External links]] and [[Wikipedia:Spam]] for details    |—>
 
<!--===========================({{NoMoreLinks}})===============================—>
 
*[http://scuba.rinkes.nl/ Brief history of diving] - From antiquity to the present.
 
*[http://www.diversalertnetwork.org/ Divers Alert Network] - Diving Emergencies/Hyperbaric Chamber Assistance.
 
*{{wikitravel}}
 
*[http://www.wikiscuba.com/wiki/index.php/Main_Page WikiScuba] - A wiki devoted to scuba diving.
 
  
 
[[category:Art, music, literature, sports and leisure]]
 
[[category:Art, music, literature, sports and leisure]]
 
{{credits|Scuba_diving|165207865}}
 
{{credits|Scuba_diving|165207865}}

Latest revision as of 02:37, 21 April 2023

ScubaDivingShot.jpg

Scuba diving is the act of swimming underwater while using a self-contained breathing apparatus. By carrying a source of compressed air, the scuba diver is able to stay underwater longer than with the simple breath-holding techniques used in Snorkeling and Free-diving, and is not hindered by air-lines to a remote air source. The scuba diver typically swims underwater by using fins attached to the feet. However, some divers also move around with the assistance of a DPV (Diver Propulsion Vehicle), commonly referred to as a "scooter," or by using surface-tethered devices called sleds, which are pulled by a boat.

Scuba diving emphasizes human interaction with the environment, in this case the majesty of the ocean or other bodies of water. It matches exercise with the spirit of exploration and the beauty of nature.

History of scuba diving

The history of scuba diving can be traced back to 1825, when William James developed a compressed air container that fit around a diver's waist. James developed the design, but no record was made of him using the device. The first recorded dive using a self-contained breathing apparatus was done by Charles Condert. Condert designed a horseshoe-shaped air container mounted to a helmet that allowed for constant flow of air to the head device. The diver used the helmet design many times, but died in 1832, because of a broken air tube.

In 1865, two Frenchman by the names of Rouquayrol and Denayrouse used a metal container that allowed the diver to breath air at the same pressure that was in the water. It helped greatly in the development of wreck and sponge diving.

Commandanat Yves Le Prievr of the French Navy developed a light weight, self-contained breathing apparatus and also started a diving club in Paris. Although Yves Le Priever's invention helped progress the idea of underwater diving, the machine was still not fully automatic.

The first fully automatic aqualung was made by Frenchman Georges Commeinhes and had a pressure of 150 bars. In 1942, in what could be considered one of the biggest moments in scuba diving history, Jacques Cousteau created an aqualung with the help of Emile Gagnan that was fully automatic as well. It had a inlet and exhaust tube that was fully automatic, and helped pave the way for modern scuba diving.

Equipment

Besides the need for an underwater air chamber, there is other equipment needed to scuba dive successfully.

A mask is needed when diving to ensure clear and constant vision underwater. The required features for the mask include a surface that cannot shatter or scratch, and a waterproof seal that molds around the diver's face. Tempered glass is usually used to guarantee no scratching or shattering, and silicone rubber is used for the waterproof seal. To ensure that no pressure damage occurs during the dive, the mask must cover the nose and ears as well.

The next piece of equipment that is needed are fins. Fins are worn on the feet and are used to help accelerate the diver more quickly through the water. They are made up of two major parts: The blade, which needs to be firm to promote more power when the diver kicks, and the shoe, which needs to made of softer rubber for comfort.

A snorkel is also needed for scuba diving because it allows the diver to swim near the surface and have a valve for breathing. It is made out of a mouthpiece consisting of rubber and a tube pointed upward that allows one to breath.

A diver's buoyancy is a very important part of scuba diving. In Scuba Diving, the diver cannot rise to the surface too quickly without risking safety concerns, but at the same time, needs to be able to surface if there is a dramatic emergency such as equipment failure. Increasing the buoyancy of the diver is centered on increasing the weight the diver carriers. The best way to do this is by the use of a wetsuit, or dry-suit, and by wearing a weight belt. In the case of a dry-suit, it does exactly that: Keeps a diver dry. The suit is sealed so that frigid water cannot penetrate the suit. Dry-suit undergarments are often worn under a dry-suit as well, and help to keep layers of air inside the suit for better thermal insulation. Some divers carry an extra gas bottle dedicated to filling the dry suit. Usually this bottle contains argon gas, because it is a better insulator than air.

Dry-suits fall into two main categories—neoprene and membrane; both systems have their good and bad points but generally the difference is:

  • Membrane: High level of diver maneuverability due to the thinness of the material, however that also means that heavy weight under-suit is required if diving in cooler water.
  • Neoprene: Low level of diver maneuverability due to the material being considerably thicker than membrane material (even when dealing with compressed neoprene) however the neoprene provides a higher level of insulation for the diver.

A wetsuit or dry suit can also keep a diver warm in cold water. The weight belt must be placed in a way that allows for quick release in case of an emergency in which the diver needs to get to the surface.

The famous Aqualung that was first created by Jacques Cousteau and Emile Gaganan consist of three major parts: Air cylinder, harness, and regulator. The cylinder is made out of steel or aluminum, and carries the oxygen supply. The regulator is the device that controls the pressure to be the same amount as the pressure in the water. The harness is the way in which the device is carried on the diver's back.

The most commonly used scuba set today is the "single-hose" open circuit 2-stage diving regulator, coupled to a single pressurized gas cylinder, with the first stage on the cylinder and the second stage at the mouthpiece. This arrangement differs from Emile Gagnan's and Jacques Cousteau's original 1942 "twin-hose" design, in which the cylinder's pressure was reduced to ambient pressure in one, two, or three stages which were all on the cylinder. The "single-hose" system has significant advantages over the original system.

Re-breather

Less common, but becoming increasingly available, are closed and semi-closed re-breathers. Open-circuit sets vent off all exhaled gases, but re-breathers reprocess each exhaled breath for re-use by removing the carbon dioxide buildup and replacing the oxygen used by the diver. Re-breathers release few or no gas bubbles into the water, and use much less oxygen per hour because exhaled oxygen is recovered; this has advantages for research, frogman, photography, and other applications. Modern re-breathers are more complex and more expensive than sport open-circuit scuba, and need special training and maintenance to safely use.

Gas mixtures

For some diving, gas mixtures other than normal atmospheric air (21 percent oxygen, 78 percent nitrogen, 1 percent other) can be used, so long as the diver is properly trained in their use. The most commonly used mixture is Enriched Air Nitrox, which is air with extra oxygen, often with 32 or 36 percent oxygen, and thus less nitrogen, reducing the effect of decompression sickness and nitrogen narcosis.

Several other common gas mixtures are in use, and all need specialized training. For example, oxygen with helium and a reduced percentage of nitrogen is known as trimix.

In cases of technical dives more than one cylinder may be carried, containing a different gas mixture for a distinct phase of the dive, typically designated as "travel," "bottom," and "decompression." These different gas mixtures may be used to extend bottom time, reduce inert gas narcotic effects, and reduce decompression times.

Important safety issues

There are important physiological issues posed by diving.

Breathing underwater

Water normally contains dissolved oxygen from which fish and other aquatic animals extract all their required oxygen as the water flows past their gills. Humans lack gills and do not otherwise have the capacity to breathe underwater unaided by external devices.

Early diving experimenters quickly discovered it is not enough simply to supply air in order to breathe comfortably underwater. As one descends, in addition to the normal atmospheric pressure, water exerts increasing pressure on the chest and lungs—approximately 1 bar or 14.7 psi for every 33 feet or 10 meters of depth—so the pressure of the inhaled breath must exactly counter the surrounding or ambient pressure in order to inflate the lungs.

By always providing the breathing gas at ambient pressure, modern demand valve regulators ensure the diver can inhale and exhale naturally and virtually effortlessly, regardless of depth.

Because the diver's nose and eyes covered by a diving mask, the diver cannot breathe in through the nose, except when wearing a full face diving mask. However, inhaling from a regulator's mouthpiece becomes second nature very quickly.

The "Alfa" flag - Designates a vessel engaged in underwater operations with restricted maneuverability.[1]

Injuries due to changes in air pressure

Divers must avoid injuries caused by changes in air pressure. The weight of the water column above the diver causes an increase in air pressure in any compressible material (wetsuit, lungs, sinus) in proportion to depth, in the same way that atmospheric air causes a pressure of 14.7 lbs per square inch at sea level. Pressure injuries are called barotrauma and can be quite painful, in severe cases causing a ruptured eardrum or damage to the sinuses. To avoid them, the diver equalizes the pressure in all air spaces with the surrounding water pressure when changing depth. The middle ear and sinus are equalized using one of two techniques.

The first technique is known as the "Valsalva maneuver," which involves pinching the nose and gently attempting to exhale through it. The second technique is known as the "Frenzel maneuver," which involves using the throat muscles in a swallowing motion. This maneuver is more difficult to master than the Valsalva maneuver.

The mask is equalized by periodically exhaling through the nose. If a dry-suit is worn, it too must be equalized by inflation and deflation, similar to a buoyancy compensator.

Effects of breathing high pressure gas

Decompression sickness

The diver must avoid the formation of gas bubbles in the body, called decompression sickness or "the bends," by releasing the water pressure on the body slowly at the end of the dive and allowing gases trapped in the bloodstream to gradually break solution and leave the body, called "off-gassing." This is done by making safety stops or decompression stops and ascending slowly using dive computers or decompression tables for guidance. Decompression sickness must be treated promptly, typically in a recompression chamber. Administering enriched-oxygen breathing gas or pure oxygen to a decompression sickness stricken diver on the surface is a good form of first aid for decompression sickness, although fatality or permanent disability may still occur.

Nitrogen narcosis

Nitrogen narcosis or inert gas narcosis is a reversible alteration in consciousness producing a state similar to alcohol intoxication in divers who breathe high pressure gas at depth. The mechanism is similar to that of nitrous oxide, or "laughing gas," administered as anesthesia. Being "narced" can impair judgment and make diving very dangerous. Narcosis starts to affect the diver at 66 feet (20 meters), or 3 atmospheres of pressure. At 66 feet, Narcosis manifests itself as slight giddiness. The effects increase drastically with the increase in depth. Jacques Cousteau famously described it as the "rapture of the deep." Nitrogen narcosis occurs quickly and the symptoms typically disappear during the ascent, so that divers often fail to realize they were ever affected. It affects individual divers at varying depths and conditions, and can even vary from dive to dive under identical conditions. However, diving with trimix or heliox prevents narcosis from occurring.

Oxygen toxicity

Oxygen toxicity occurs when oxygen in the body exceeds a safe "partial pressure" (PPO2). In extreme cases it affects the central nervous system and causes a seizure, which can result in the diver spitting out his regulator and drowning. Oxygen toxicity is preventable provided one never exceeds the established maximum depth of a given breathing gas. For deep dives, (generally past 130 feet/39 meters) "hypoxic blends" containing a lower percentage of oxygen than atmospheric air are used.

Refraction and underwater vision

A diver wearing an Ocean Reef full face mask

Water has a higher refractive index than air; it's similar to that of the cornea of the eye. Light entering the cornea from water is hardly refracted at all, leaving only the eye's crystalline lens to focus light. This leads to very severe hypermetropia. People with severe myopia, therefore, can see better underwater without a mask than normal-sighted people.

Diving masks and diving helmets and fullface masks solve this problem by creating an air space in front of the diver's eyes. The refraction error created by the water is mostly corrected as the light travels from water to air through a flat lens, except that objects appear approximately 34 percent bigger and 25 percent closer in salt water than they actually are. Therefore, total field-of-view is significantly reduced and eye-hand coordination must be adjusted.

(This affects underwater photography: A camera seeing through a flat window in its casing is affected the same as its user's eye seeing through a flat mask window, and so its user must focus for the apparent distance to target, not for the real distance.)

Divers who need corrective lenses to see clearly outside the water would normally need the same prescription while wearing a mask. Generic and custom corrective lenses are available for some two-window masks. Custom lenses can be bonded onto masks that have a single front window.

A "double-dome mask" has curved windows in an attempt to cure these faults, but this causes a refraction problem of its own.

On rare occasions, commando frogmen use special contact lenses instead, to see underwater without the large glass surface of a diving mask, which can reflect light and give away the frogman's position.

As a diver changes depth, he must periodically exhale through his nose to equalize the internal pressure of the mask with that of the surrounding water. Swimming goggles which only cover the eyes do not allow for equalization and thus are not suitable for diving.

Controlling buoyancy underwater

To dive safely, divers need to be able to control their rate of descent and ascent in the water. Ignoring other forces such as water currents and swimming, the diver's overall buoyancy determines whether he ascends or descends. Equipment such as the diving weighting systems, diving suits (Wet, Dry & Semi-dry suits are used depending on the water temperature) and buoyancy compensators can be used to adjust the overall buoyancy. When divers want to remain at constant depth, they try to achieve neutral buoyancy. This minimizes gas consumption caused by swimming to maintain depth.

The downward force on the diver is the weight of the diver and his equipment minus the weight of the same volume of the liquid that he is immersed in; if the result is negative, that force is upwards. Diving weighting systems can be used to reduce the diver's weight and cause an ascent in an emergency. Diving suits, mostly being made of compressible materials, shrink as the diver descends, and expand as the diver ascends, creating unwanted buoyancy changes. The diver can inject air into some diving suits to counteract this effect and squeeze. Buoyancy compensator allow easy and fine adjustments in the diver's overall volume and therefore buoyancy. For open circuit divers, changes in the diver's lung volume can be used to adjust buoyancy.

Spring Suit and Steamer.

Avoiding skin cuts and grazes

Diving suits also help prevent the diver's skin being damaged by rough or sharp underwater objects, marine animals, or coral.

Diving longer and deeper safely

There are a number of techniques to increase the diver's ability to dive deeper and longer:

  • Technical diving—diving deeper than 40 meters (130 feet) and/or using mixed gases.
  • Surface supplied diving—use of umbilical gas supply and diving helmets.
  • Saturation diving—long-term use of underwater habitats under pressure and a gradual release of pressure over several days in a decompression chamber at the end of a dive

Underwater mobility

The diver needs to be mobile underwater. Streamlining dive gear will reduce drag and improve mobility. Personal mobility is enhanced by swimfins and Diver Propulsion Vehicles. Other equipment to improve mobility includes diving bells and diving shots.

Scuba dive training and certification agencies

Recreational scuba diving does not have a centralized certifying or regulatory agency, and is mostly self-regulated. There are, however, several large diving organizations that train and certify divers and dive instructors, and many diving related sales and rental outlets require proof of diver certification from one of these organizations prior to selling or renting certain diving products or services.

The largest international certification agencies that are currently recognized by most diving outlets for diver certification include:

  • American Canadian Underwater Certifications (ACUC) (formerly Association of Canadian Underwater Councils)—originated in Canada in 1969 and expanded internationally in 1984—certifications recognized worldwide.
  • British Sub Aqua Club (BSAC)—based in the United Kingdom, mostly for UK divers and clubs
  • European Committee of Professional Diving Instructors (CEDIP) based in Europe since 1992 but international certifications are recognized all over the world.
  • Confédération Mondiale des Activités Subaquatiques (CMAS), the World Underwater Federation
  • National Association of Underwater Instructors (NAUI)—based in the U.S.
  • Professional Diving Instructors Corporation (PDIC)—based in the U.S.
  • Professional Association of Diving Instructors (PADI)—based in the U.S., largest recreational dive training and certification organization in the world
  • International Training SDI, TDI & ERDi
  • Scuba Schools International (SSI)—based in the U.S.
  • YMCA scuba—based in the U.S., part of Young Men's Christian Association (YMCA), a Christian related organization (open to all faiths, ages and genders despite the historic name)
A scuba diver approaching the "1,000 Steps" dive site in Bonaire.
Scuba diving, grouped

Notes

  1. www.navcen.uscg.gov, Vessel Not Under Command Retrieved December 22, 2007.

References
ISBN links support NWE through referral fees

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.