Endocytosis

From New World Encyclopedia
Revision as of 13:14, 8 August 2008 by Rick Swarts (talk | contribs)

Endocytosis is a process where cells ingest material (macromolecules, low-molecular weight [[molecule]s, and particles) from outside the cell by enclosing it with a portion of their cell membrane and bringing it into the cell in a membrane-bound vesicle. In other words, a small portion of the cell membrane (plasma membrane) invaginates and progressively encloses the extracellular substance, and then pinches off inside the cell to form a membrane-bound, intracellular vesicle with the ingested material (Alberts et al. 1989). The function of endocytosis is the opposite of exocytosis, in which materials packaged in secretory vesicles inside the cell fuse with the plasma membrane and open to the exterior space, releasing the material (Alberts et al. 1989).

Endocytosis is used by cells because most substances important to them are large polar molecules, and thus cannot pass through the hydrophobic plasma membrane. The material tends to remain sequestered in vesicles and does not mix with other macromolecules or organelles in the cytoplasm, other than specific membranes for which it is destined, causing a directed transfer between the inside and outside of the cell (Alberts et al. 1989). Typically, the internalized molecules trapped in the intracellular vesicles eventually fuse with the membrane-bound lysosomes and are degraded (Khalil et al. 2006).

Endocytosis may involve the ingestion of fluid and solutes or the ingestion of large particles (such as microorganisms and cell debris) (Alberts et al. 1989).

Overview and categories

Different forms of Endocytosis

Many substances needed by the cell cannot cross the plasma membrane because of their size or hydrophilic nature. Endocytosis, or the vesicular uptake of extracellular materials, is a means whereby the macromolecules can be internalized by a cell. Khalil et al. (2006) succinctly define endocytosis as: <quote>Endocytosis refers to the cellular uptake of macromolecules and solutes into membrane-bound vesiciles derived by the invagination and pinching off of pieces of the plasma membrane.</quote>

The absorption of material from the outside environment of the cell is commonly divided into two broad categories: phagocytosis and pinocytosis.

Phagocytosis. Phagocytosis (literally, "cell-eating") is the process by which cells ingest large objects, such as cells which have undergone apoptosis, bacteria, or viruses. The membrane folds around the object, and the object is sealed off into a large vacuole known as a phagosome.

Pinocytosis (literally, cell-drinking). This process is concerned with the uptake of solutes and single molecules such as proteins.


Modes

Receptor-mediated endocytosis is a more specific active event where the cytoplasm membrane folds inward to form coated pits. These inward budding vesicles bud to form cytoplasmic vesicles.

Endocytosis pathways

There are three types of endocytosis: namely, macropinocytosis, caveolar endocytosis, and clathrin-mediated endocytosis.

  • Macropinocytosis is the invagination of the cell membrane to form a pocket, which then pinches off into the cell to form a vesicle filled with extracellular fluid (and molecules within it). The filling of the pocket occurs in a non-specific manner. The vesicle then travels into the cytosol and fuses with other vesicles such as endosomes and lysosomes.
  • Caveolae consists of the protein caveolin-1 with a bilayer enriched in cholesterol and glycolipids. Caveolae are flask-shape pits in the membrane that resemble the shape of a cave (hence the name caveolae). Uptake of extracellular molecules are also believed to be specifically mediated via receptors in caveolae.
  • Clathrin-mediated endocytosis is the specific uptake of large extracellular molecules such as proteins, membrane localized receptors and ion-channels. These receptors are associated with the cytosolic protein clathrin, which initiates the formation of a vesicle by forming a crystalline coat on the inner surface of the cell's membrane.

Clathrin-mediated endocytosis

The major route for endocytosis in most cells, and the best-understood, is that mediated by the molecule clathrin. This large protein assists in the formation of a coated pit on the inner surface of the plasma membrane of the cell. This pit then buds into the cell to form a coated vesicle in the cytoplasm of the cell. In so doing, it brings into the cell not only a small area of the surface of the cell but also a small volume of fluid from outside the cell.

Vesicles selectively concentrate and exclude certain proteins during formation and are not representative of the membrane as a whole. AP2 adaptors are multisubunit complexes that perform this function at the plasma membrane. The best-understood receptors that are found concentrated in coated vesicles of mammalian cells are the LDL receptor (which removes LDL from circulating blood), the transferrin receptor (which brings ferric ions bound by transferrin into the cell) and certain hormone receptors (such as that for EGF).

At any one moment, about 25% of the plasma membrane of a fibroblast is made up of coated pits. As a coated pit has a life of about a minute before it buds into the cell, a fibroblast takes up its surface by this route about once every 50 minutes. Coated vesicles formed from the plasma membrane have a diameter of about 100nm and a lifetime measured in a few seconds. Once the coat has been shed, the remaining vesicle fuses with endosomes and proceeds down the endocytic pathway. The actual budding-in process, whereby a pit is converted to a vesicle, is carried out by clathrin assisted by a set of cytoplasmic proteins, which includes dynamin and adaptors such as adaptin.

Coated pits and vesicles were first seen in thin sections of tissue in the electron microscope by Thomas Roth and Keith Porter in 1964. The importance of them for the clearance of LDL from blood was discovered by R. G Anderson, Michael S. Brown and Joseph L. Goldstein in 1976. Coated vesicles were first purified by Barbara Pearse, who discovered the clathrin coat molecule, also in 1976.

See also

External links

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.