Difference between revisions of "Gas constant" - New World Encyclopedia

From New World Encyclopedia
(applied ready tag)
(imported latest version of article from Wikipedia)
Line 1: Line 1:
{{ready}}
 
 
{|  class="wikitable" style="float: right;"
 
{|  class="wikitable" style="float: right;"
 
! Values of ''R''
 
! Values of ''R''
! Units
+
! Units <br /> [[Ideal gas law|(V·P·T<sup>-1</sup>·n<sup>-1</sup>)]]
 
|- [[International Organization for Standardization | ISO]]
 
|- [[International Organization for Standardization | ISO]]
 
| 8.314472
 
| 8.314472
J·K<sup>-1</sup>·mol<sup>-1</sup>
+
[[Joule|J]]·K<sup>-1</sup>·mol<sup>-1</sup>
 
|-  
 
|-  
| 0.08205784
+
| 0.0820574587
| L·atm·K<sup>-1</sup>·mol<sup>-1</sup>
+
| [[Liter|L]]·[[atmosphere (unit)|atm]]·[[Kelvin|K]]<sup>-1</sup>·[[Mole (unit)|mol]]<sup>-1</sup>
 
|-  
 
|-  
 
| 8.20574587 × 10<sup>-5</sup>
 
| 8.20574587 × 10<sup>-5</sup>
Line 17: Line 16:
 
|-  
 
|-  
 
| 8.314472  
 
| 8.314472  
| L·kPa·K<sup>-1</sup>·mol<sup>-1</sup>
+
| L·k[[Pascal (unit)|Pa]]·K<sup>-1</sup>·mol<sup>-1</sup>
 
|-  
 
|-  
 
| 8.314472  
 
| 8.314472  
| m<sup>3</sup>·Pa·K<sup>-1</sup>·mol<sup>-1</sup>
+
| m<sup>3</sup>·[[Pascal (unit)|Pa]]·K<sup>-1</sup>·mol<sup>-1</sup>
 
|-  
 
|-  
| 62.3637
+
| 62.36367
| L·mmHg·K<sup>-1</sup>·mol<sup>-1</sup>
+
| L·[[mmHg]]·K<sup>-1</sup>·mol<sup>-1</sup>
 
|-  
 
|-  
| 62.3637
+
| 62.36367
 
| L·Torr·K<sup>-1</sup>·mol<sup>-1</sup>
 
| L·Torr·K<sup>-1</sup>·mol<sup>-1</sup>
 
|-  
 
|-  
Line 32: Line 31:
 
|-  
 
|-  
 
| 1.987  
 
| 1.987  
| cal &middot; K<sup>-1</sup>·mol<sup>-1</sup>
+
| [[calorie|cal]]·K<sup>-1</sup>·mol<sup>-1</sup>
 
|-  
 
|-  
 
| 6.132440  
 
| 6.132440  
| lbf·ft·K<sup>-1</sup>·g·mol<sup>-1</sup>
+
| [[foot-pound|lbf]]·ft·K<sup>-1</sup>·g-mol<sup>-1</sup>
 
|-  
 
|-  
| 10.7316
+
| 10.73159
| ft<sup>3</sup>·psi&middot; °R<sup>-1</sup>·[[lb-mol]]<sup>-1</sup>
+
| ft<sup>3</sup>·psi· [[Rankine scale|°R]]<sup>-1</sup>·[[lb-mol]]<sup>-1</sup>
 
|-  
 
|-  
| 8.63 × 10<sup>-5</sup>
+
|  0.7302413
| eV·K<sup>-1</sup>·atom<sup>-1</sup>
+
| ft<sup>3</sup>·atm·°R<sup>-1</sup>·lb-mol<sup>-1</sup>
 +
|-
 +
|  998.9701
 +
| ft<sup>3</sup>·mmHg·K<sup>-1</sup>·lb-mol<sup>-1</sup>
 +
|-
 +
| 8.314472 × 10<sup>7</sup>
 +
|  erg·K<sup>-1</sup>·mol<sup>-1</sup>
 +
|-
 +
|  1716  '''(Air only)'''
 +
| ft·lb·°R<sup>-1</sup>·[[slug (unit)|slug]]<sup>-1</sup>
 +
|-
 +
|  286.9 '''(Air only)'''
 +
| N·m·kg<sup>-1</sup>·K<sup>-1</sup>  
 
|-  
 
|-  
0.7302
+
286.9 '''(Air only)'''
| ft<sup>3</sup>·atm·°R<sup>-1</sup>·lb-mol<sup>-1</sup>
+
| J·kg<sup>-1</sup>·K<sup>-1</sup>  
 
|}
 
|}
The '''gas constant''' (also known as the '''universal''' or '''ideal gas constant''', usually denoted by symbol '''''R''''') is a [[physical constant]] used in [[equations of state]] to relate various groups of [[state function]]s to one another.  It is another name for the [[Boltzmann constant]], but when used in the [[ideal gas law]] it is usually expressed in the more convenient units of [[energy]] per [[kelvin]] per [[mole (unit)|mole]] rather than simply energy per kelvin per particle.
+
The '''gas constant''' (also known as the '''molar''', '''universal''', or '''ideal gas constant''', usually denoted by symbol '''''R''''') is a [[physical constant]] which is featured in a large number of fundamental equations in the physical sciences, such as the [[ideal gas law]] and the [[Nernst equation]].  It is equivalent to the [[Boltzmann constant]], but expressed in units of [[energy]] (i.e. the pressure-volume product) per [[kelvin]] per ''[[mole (unit)|mole]]'' (rather than energy per kelvin per ''particle'').
 
 
The ideal gas constant occurs in the simplest equation of state, the [[ideal gas law]], as follows:
 
:<math>P = {RT\over{\tilde{V}}}</math>
 
where ''P'' is the [[pressure]] of an [[ideal gas]]<br/>
 
''T'' is its [[temperature]]<br/>
 
<math>\tilde{V}</math> is its [[molar volume]]<br/>
 
This can also be written as:<br/>
 
:<math>\qquad PV=nRT</math>
 
where ''V'' is the volume the gas occupies<br/>
 
''n'' is the moles of gas
 
 
 
''R'' appears in the [[Nernst equation]] as well as in the [[Lorentz-Lorenz]] formula.  
 
  
 
Its value is:
 
Its value is:
 
:'''''R'' = 8.314472(15) J &middot; K<sup>-1</sup> &middot; mol<sup>-1</sup>'''
 
:'''''R'' = 8.314472(15) J &middot; K<sup>-1</sup> &middot; mol<sup>-1</sup>'''
The two digits between the [[Bracket|parentheses]] denote the uncertainty ([[standard deviation]]) in the last two digits of the value.
+
The two digits in [[Bracket|parentheses]] are the uncertainty ([[standard deviation]]) in the last two digits of the value.
  
===Boltzmann constant===
+
The gas constant occurs in the simplest [[equation of state]], the [[ideal gas law]], as follows:
The [[Boltzmann constant]] ''k<sub>B</sub>'' (often abbreviated ''k'') may be used in place of the other forms of the ideal gas constant by working in pure particle count rather than number of moles of gas; this simply requires carrying a factor of [[Avogadro constant|Avogadro's number]].  Writing:
+
:<math>P = \frac{nRT}{V} = \frac{RT}{V_{\rm m}}</math>
:<math>k_B = \frac{R}{N_A}</math>
+
where:
 +
: <math>P\,\!</math> is the absolute [[pressure]]
 +
: <math>T\,\!</math> is absolute [[thermodynamic temperature|temperature]]
 +
: <math>V\,\!</math> is the volume the gas occupies
 +
: <math>n\,\!</math> is the amount of gas (the number of gas molecules, usually in [[mole (unit)|mole]]s)
 +
: <math>V_{\rm m}\,\!</math> is the [[molar volume]]
  
One can then express the ideal gas law in direct terms of Boltzmann's constant:
+
The gas constant has the same units as specific [[entropy]].
:<math>\qquad PV=Nk_BT</math>
+
 
 +
===Relationship with the Boltzmann constant===
 +
The [[Boltzmann constant]] ''k<sub>B</sub>'' (often abbreviated ''k'') may be used in place of the gas constant by working in pure particle count, ''N'', rather than number of moles, ''n'', since
 +
:<math>\qquad R=N_A k_B\,\!</math>,
 +
where <math>N_A</math> is [[Avogadro constant|Avogadro's number]].
 +
For example, the ideal gas law in terms of Boltzmann's constant is <math>PV=Nk_BT\,\!</math>.
  
 
===Specific gas constant===
 
===Specific gas constant===
  
The '''specific gas constant''' of a gas or a mixture of gases ( <math>\bar{R} </math> ) is given by the universal gas constant, divided by the [[molar mass]] ( <math>M</math> ) of the gas/mixture.
+
The '''specific gas constant''' of a gas or a mixture of gases (R)is given by the universal gas constant, divided by the [[molar mass]] (<math>M</math>) of the gas/mixture.
:<math> \bar{R} = \frac{R}{M} </math>
+
:<math> R = \frac{\bar{R}}{M} </math>
  
It is common to represent the specific gas constant by the symbol <math>R</math>. In such cases the context and/or units of <math>R</math> should make it clear as to which gas constant is being referred to. For example, the equation for the [[speed of sound#speed in ideal gases and in air|speed of sound]], is usually written in terms of the specific gas constant.
+
It is common to represent the specific gas constant by the symbol <math>R</math>. In such cases the context and/or units of <math>R</math> should make it clear as to which gas constant is being referred to. For example, the equation for the [[speed of sound#speed in ideal gases and in air|speed of sound]] is usually written in terms of the specific gas constant.
  
 
The specific gas constant of dry [[air]] is
 
The specific gas constant of dry [[air]] is
Line 82: Line 91:
  
 
==US Standard Atmosphere==
 
==US Standard Atmosphere==
The [[US Standard Atmosphere]], 1976 (USSA1976) defines the Universal Gas Constant (R) as:<ref>[http://www.sworld.com.au/steven/space/atmosphere/ "Standard Atmospheres". ''Sworld.com.au''. Retrieved December 2, 2007</ref><ref name="USSA1976">[http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539_1977009539.pdf "U.S. Standard Atmosphere"], 1976, U.S. Government Printing Office, Washington, D.C. Retrieved December 2, 2007.</ref>
+
The [[US Standard Atmosphere]], 1976 (USSA1976) defines the Universal Gas Constant as:<ref>{{cite web |url=http://www.sworld.com.au/steven/space/atmosphere/ |title=Standard Atmospheres |accessdate=2007-01-07}}</ref><ref name="USSA1976">[http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539_1977009539.pdf U.S. Standard Atmosphere], 1976, U.S. Government Printing Office, Washington, D.C., 1976 (Linked file is 17 MiB).</ref>
  
:<math>R = 8.31432\mbox{ x }10^3 \frac{\mathrm{N \cdot m}}{\mathrm{kmol \cdot K}} </math>
+
:<math>\bar{R} = 8.31432\times 10^3 \frac{\mathrm{N \cdot m}}{\mathrm{kmol \cdot K}} </math>
  
The USSA1976 does recognize, however, that this value is not consistent with the cited values for the Avogadro constant and the Boltzmann constant.<ref name="USSA1976"/>  Still, the USSA1976 uses this value of R for all the calculations of the standard atmosphere.  This disparity is not a significant departure from accuracy.  When using the [[International Organization for Standardization | ISO]] value of R, the calculated pressure increases by only 0.62 pascals at 11,000 meters (the equivalent of a difference of only 0.174 meters – or 6.8 inches) and an increase of 0.292 pascals at 20,000 meters (the equivalent of a difference of only 0.338 meters – or 13.2 inches).
+
The USSA1976 does recognize, however, that this value is not consistent with the cited values for the Avogadro constant and the Boltzmann constant.<ref name="USSA1976"/>  This disparity is not a significant departure from accuracy, and USSA1976 uses this value of ''R'' for all the calculations of the standard atmosphere.  When using the [[International Organization for Standardization|ISO]] value of ''R'', the calculated pressure increases by only 0.62 pascals at 11,000 meters (the equivalent of a difference of only 0.174 meters – or 6.8 inches) and an increase of 0.292 pascals at 20,000 meters (the equivalent of a difference of only 0.338 meters – or 13.2 inches).
  
 
== See also ==
 
== See also ==
 
* [[Boltzmann constant]]
 
* [[Boltzmann constant]]
  
==Notes==
+
==References==
  
 
<!--See [[Wikipedia:Footnotes]] for an explanation of how to generate footnotes using the <ref(erences/)> tags—>
 
<!--See [[Wikipedia:Footnotes]] for an explanation of how to generate footnotes using the <ref(erences/)> tags—>
Line 97: Line 106:
  
 
== External links ==
 
== External links ==
 
All links retrieved December 2, 2007
 
 
 
* [http://physics.nist.gov/cgi-bin/cuu/Value?r|search_for=gas+constant Gas Constant CODATA Value] at [[NIST]]
 
* [http://physics.nist.gov/cgi-bin/cuu/Value?r|search_for=gas+constant Gas Constant CODATA Value] at [[NIST]]
 
* [http://physics.nist.gov/cgi-bin/cuu/Value?k|search_for=boltzmann Boltzmann Constant CODATA Value] at [[NIST]]
 
* [http://physics.nist.gov/cgi-bin/cuu/Value?k|search_for=boltzmann Boltzmann Constant CODATA Value] at [[NIST]]
  
[[Category:Physical sciences]]
+
[[Category:Gases|Constant]]
[[Category:Physics]]
+
[[Category:Physical constants]]
  
{{credit|172490929}}
+
[[ar:ثابت الغازات العام]]
 +
[[bs:Univerzalna gasna konstanta]]
 +
[[bg:Универсална газова константа]]
 +
[[cs:Molární plynová konstanta]]
 +
[[da:Gaskonstant]]
 +
[[de:Universelle Gaskonstante]]
 +
[[et:Universaalne gaasikonstant]]
 +
[[es:Constante universal de los gases ideales]]
 +
[[eo:Universala gaskonstanto]]
 +
[[fa:ثابت عمومی گازها]]
 +
[[fr:Constante universelle des gaz parfaits]]
 +
[[ko:기체 상수]]
 +
[[it:Costante dei gas]]
 +
[[he:קבוע הגזים]]
 +
[[lt:Dujų konstanta]]
 +
[[hu:Egyetemes gázállandó]]
 +
[[nl:Gasconstante]]
 +
[[ja:気体定数]]
 +
[[mr:वैश्विक वायू एकक]]
 +
[[no:Gasskonstant]]
 +
[[nn:Gasskonstant]]
 +
[[pl:Stała gazowa]]
 +
[[pt:Constante universal dos gases perfeitos]]
 +
[[ru:Универсальная газовая постоянная]]
 +
[[sk:Univerzálna plynová konštanta]]
 +
[[sl:Splošna plinska konstanta]]
 +
[[fi:Kaasuvakio]]
 +
[[sv:Allmänna gaskonstanten]]
 +
[[th:ค่าคงตัวของแก๊ส]]
 +
[[vi:Hằng số khí]]
 +
[[uk:Газова стала]]
 +
[[zh:氣體常數]]

Revision as of 18:52, 15 July 2008

Values of R Units
(V·P·T-1·n-1)
8.314472 J·K-1·mol-1
0.0820574587 L·atm·K-1·mol-1
8.20574587 × 10-5 m3·atm·K-1·mol-1
8.314472 cm3·MPa·K-1·mol-1
8.314472 L·kPa·K-1·mol-1
8.314472 m3·Pa·K-1·mol-1
62.36367 L·mmHg·K-1·mol-1
62.36367 L·Torr·K-1·mol-1
83.14472 L·mbar·K-1·mol-1
1.987 cal·K-1·mol-1
6.132440 lbf·ft·K-1·g-mol-1
10.73159 ft3·psi· °R-1·lb-mol-1
0.7302413 ft3·atm·°R-1·lb-mol-1
998.9701 ft3·mmHg·K-1·lb-mol-1
8.314472 × 107 erg·K-1·mol-1
1716 (Air only) ft·lb·°R-1·slug-1
286.9 (Air only) N·m·kg-1·K-1
286.9 (Air only) J·kg-1·K-1

The gas constant (also known as the molar, universal, or ideal gas constant, usually denoted by symbol R) is a physical constant which is featured in a large number of fundamental equations in the physical sciences, such as the ideal gas law and the Nernst equation. It is equivalent to the Boltzmann constant, but expressed in units of energy (i.e. the pressure-volume product) per kelvin per mole (rather than energy per kelvin per particle).

Its value is:

R = 8.314472(15) J · K-1 · mol-1

The two digits in parentheses are the uncertainty (standard deviation) in the last two digits of the value.

The gas constant occurs in the simplest equation of state, the ideal gas law, as follows:

where:

is the absolute pressure
is absolute temperature
is the volume the gas occupies
is the amount of gas (the number of gas molecules, usually in moles)
is the molar volume

The gas constant has the same units as specific entropy.

Relationship with the Boltzmann constant

The Boltzmann constant kB (often abbreviated k) may be used in place of the gas constant by working in pure particle count, N, rather than number of moles, n, since

,

where is Avogadro's number. For example, the ideal gas law in terms of Boltzmann's constant is .

Specific gas constant

The specific gas constant of a gas or a mixture of gases (R)is given by the universal gas constant, divided by the molar mass () of the gas/mixture.

It is common to represent the specific gas constant by the symbol . In such cases the context and/or units of should make it clear as to which gas constant is being referred to. For example, the equation for the speed of sound is usually written in terms of the specific gas constant.

The specific gas constant of dry air is

US Standard Atmosphere

The US Standard Atmosphere, 1976 (USSA1976) defines the Universal Gas Constant as:[1][2]

The USSA1976 does recognize, however, that this value is not consistent with the cited values for the Avogadro constant and the Boltzmann constant.[2] This disparity is not a significant departure from accuracy, and USSA1976 uses this value of R for all the calculations of the standard atmosphere. When using the ISO value of R, the calculated pressure increases by only 0.62 pascals at 11,000 meters (the equivalent of a difference of only 0.174 meters – or 6.8 inches) and an increase of 0.292 pascals at 20,000 meters (the equivalent of a difference of only 0.338 meters – or 13.2 inches).

See also

  • Boltzmann constant

References
ISBN links support NWE through referral fees

  1. Standard Atmospheres. Retrieved 2007-01-07.
  2. 2.0 2.1 U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976 (Linked file is 17 MiB).

External links

ar:ثابت الغازات العام bs:Univerzalna gasna konstanta bg:Универсална газова константа cs:Molární plynová konstanta da:Gaskonstant de:Universelle Gaskonstante et:Universaalne gaasikonstant es:Constante universal de los gases ideales eo:Universala gaskonstanto fa:ثابت عمومی گازها fr:Constante universelle des gaz parfaits ko:기체 상수 it:Costante dei gas he:קבוע הגזים lt:Dujų konstanta hu:Egyetemes gázállandó nl:Gasconstante ja:気体定数 mr:वैश्विक वायू एकक no:Gasskonstant nn:Gasskonstant pl:Stała gazowa pt:Constante universal dos gases perfeitos ru:Универсальная газовая постоянная sk:Univerzálna plynová konštanta sl:Splošna plinska konstanta fi:Kaasuvakio sv:Allmänna gaskonstanten th:ค่าคงตัวของแก๊ส vi:Hằng số khí uk:Газова стала zh:氣體常數