Pleistocene

From New World Encyclopedia
Revision as of 22:57, 20 December 2006 by Rick Swarts (talk | contribs)
Quaternary Period.

Pliocene

Gelasian
Pleistocene
Paleolithic
Lower Paleolithic
Middle Paleolithic
Upper Paleolithic

Holocene

Mesolithic or Epipaleolithic
Neolithic

The Pleistocene epoch of the geologic timescale is the period from 1,808,000 to 11,550 years BP (Before Present). The Pleistocene is the third epoch of the Neogene period or the 6th epoch of the Cenozoic era. The Pleistocene follows the Pliocene epoch and is followed by the Holocene epoch. The end of the Pleistocene corresponds with the end of the Paleolithic age used in archaeology.

The name pleistocene is derived from the Greek πλεῖστος (pleistos "most") and καινός (kainos "new").

The Pleistocene is divided into the Early Pleistocene, Middle Pleistocene, and Late Pleistocene, and a number of faunal stages (divisions based on fossil evidence).

Cenozoic era (65-0 mya)
Paleogene             Neogene      Quaternary
Tertiary sub-era Quaternary sub-era
Neogene period
Miocene Pliocene Pleistocene Holocene
Aquitanian Burdigalian Zanclean Early  
Langhian Serravallian Piacenzian Middle
Tortonian Messinian Gelasian Late


Pleistocene dating

The Pleistocene has been dated from 1.806 million (±5,000 years) to 11,550 years before present[1], with the end date expressed in radiocarbon years as 10,000 Carbon-14 years BP. It covers most of the latest period of repeated glaciation, up to and including the Younger Dryas cold spell. The end of the Younger Dryas has been dated to about 9600 B.C.E. (11550 calendar years BP).

The International Commission on Stratigraphy (a body of the International Union of Geological Sciences) has confirmed the time period for the Pleistocene, but has not yet confirmed a type section, Global Boundary Stratotype Section and Point (GSSP), for the Pleistocene/Holocene boundary. The proposed section is the North Greenland Ice Core Project ice core (75°06′N 42°18′W).[2]

The type section, Global Boundary Stratotype Section and Point (GSSP), for the start of the Pleistocene is in a reference section at Vrica, 4 km south of Crotone in Calabria, southern Italy, a location whose exact dating has recently been confirmed by analysis of strontium and oxygen isotopes as well as by planktonic foraminifera.

The name was intended to cover the recent period of repeated glaciations; however, the start was set too late and some early cooling and glaciation are now reckoned to be in the Gelasian (end of the Pliocene). Some climatologists and geologists would therefore prefer a start date of around 2.58 million years BP.[3] The name Plio-Pleistocene has in the past been used to mean the last ice age. But as only a part of the Pliocene is invovled, the Quaternary was subsequently redefined to start 2.58 Ma. as more consistent with the data.[4][3]

The continuous climatic history from the Pliocene into the Pleistocene and Holocene was one reason for the International Commission on Stratigraphy to propose discontinuance of the use of the term "Quaternary", this proposal was strongly objected to by the International Union for Quaternary Research (INQUA). The ICS proposed that the "Quaternary" be considered a sub-era (sub-erathem) with its base at the base of the Pilocene Gelasian Stage GSSP at ca. 2.6 Ma at Marine Isotope State 103. The boundary is not in dispute, but the sub-era status was rejected by INQUA. The matter remains under discussion with resolution expected to be reached by the ICS and INQUA in 2007-8.[5] Therefore, the Pleistocene is currently an epoch of both the longer Neogene and the shorter Quaternary.

The proposal of INQUA is to extend the beginning of the Pleistocene to the beginning of the Gelasian Stage, shortening the Pliocene, and ending the Neogene with the revised end of the Pliocene.[3]

Pleistocene paleogeography and climate

The maximum extent of glacial ice in the north polar area during Pleistocene time.

The modern continents were essentially at their present positions during the Pleistocene, probably having moved no more than 100 km since.

Glacial features

Pleistocene climate was characterized by repeated glacial cycles where continental glaciers pushed to the 40th parallel in some places. It is estimated that, at maximum glacial extent, 30% of the Earth's surface was covered by ice. In addition, a zone of permafrost stretched southward from the edge of the glacial sheet, a few hundred kilometers in North America, and several hundred in Eurasia. The mean annual temperature at the edge of the ice was −6°C; at the edge of the permafrost, 0°C.

Each glacial advance tied up huge volumes of water in continental ice sheets 1500-3000 m thick, resulting in temporary sea level drops of 100 m or more over the entire surface of the Earth. During interglacial times, such as we are experiencing now, drowned coastlines were common, mitigated by isostatic or other emergent motion of some regions.

The effects of glaciation were global. Antarctica was ice-bound throughout the Pleistocene as well as the preceding Pliocene. The Andes were covered, in the south by the Patagonian ice cap. There were glaciers in New Zealand and Tasmania. The current decaying glaciers of Mount Kenya, Mount Kilimanjaro, and the Ruwenzori Range in east and central Africa were larger. Glaciers existed in the mountains of Ethiopia and to the west in the Atlas mountains.

In the northern hemisphere, many glaciers fused into one. The Cordilleran ice sheet covered the North American northwest; the east was covered by the Laurentide. The Fenno-Scandian ice sheet rested on north Europe, including Great Britain; the Alpine ice sheet on the Alps. Scattered domes stretched across Siberia and the Arctic shelf. The northern seas were frozen.

South of the ice sheets large lakes accumulated due to blockage of outlets and decreased evaporation in the cooler air. North central North America was totally covered by Lake Agassiz. Over 100 basins, now dry or nearly so, were overflowing in the American west. Lake Bonneville, for example, stood where Great Salt Lake now does. In Eurasia large lakes developed as a result of the runoff from the glaciers. Rivers were larger, had a more copious flow, and were braided. African lakes were fuller, apparently from decreased evaporation.

Deserts on the other hand were drier and more extensive. Due to the decrease in oceanic and other evaporation, rainfall was lower.

Major events

Ice ages as reflected in atmospheric CO2, stored in bubbles from glacial ice of Antarctica

Four major glacial events have been identified, as well as many minor intervening events. A major event is a general glacial excursion, termed just a "glacial." Glacials are separated by "interglacials." During a glacial, the glacier experiences minor advances and retreats. The minor excursion is a "stadial"; times between stadials are "interstadials."

These events are defined differently in different regions of the glacial range, which have their own glacial history depending on latitude, terrain and climate. There is a general correspondence between glacials in different regions. Investigators often interchange the names if the glacial geology of a region is in the process of being defined. However, it is generally incorrect to apply the name of a glacial in one region to another. You would not refer to the Mindel as the Elsterian or vice versa.

For most of the 20th century only a few regions had been studied and the names were relatively few. Today the geologists of different nations are taking more of an interest in Pleistocene glaciology. As a consequence, the number of names is expanding rapidly, and will continue to expand.

Four of the better known regions with the names of the glacials are listed in the table below. Fuller information including the dates is stated in the linked articles, which combine the same glaciation of different regions. A synthesis of the larger picture is shown under Timeline of glaciation.

It should be emphasized that these glacials are a simplification of a more complex cycle of variation in climate and terrain. Many of the advances and stadials remain unnamed. Also, the terrestrial evidence for some of them has been erased or obscured by larger ones, but we know they existed from the study of cyclical climate changes.

Four of the better known regions with the names of the glacials.
Region Glacial 1 Glacial 2 Glacial 3 Glacial 4
Alps Günz Mindel Riss Würm
North Europe Eburonian Elsterian Saalian Weichselian
British Isles Beestonian Anglian Wolstonian Devensian
Midwest of US Nebraskan Kansan Illinoian Wisconsin
The interglacials corresponding to prior glacials.
Region Interglacial 1 Interglacial 2 Interglacial 3
Alps Günz-Mindel Mindel-Riss Riss-Würm
North Europe Waalian Holsteinian Eemian
British Isles Cromerian Hoxnian Ipswichian
Midwest of US Aftonian Yarmouthian Sangamonian

Corresponding to the terms glacial and interglacial, the terms pluvial and interpluvial are in use (Latin: pluvia, rain). A pluvial is a warmer period of increased rainfall; an interpluvial, of decreased rainfall. Formerly a pluvial was thought to correspond to a glacial in regions not iced, and in some cases it does. Rainfall is cyclical also. Pluvials and interpluvials are widespread.

There is no systematic correspondence of pluvials to glacials, however. Moreover, regional pluvials do not correspond to each other globally. For example, some have used the term "Riss pluvial" in Egyptian contexts. Any coincidence is an accident of regional factors. Names for some pluvials in some regions have been defined.

Palaeocycles

The sum of transient factors acting at the Earth's surface is cyclical: climate, ocean currents and other movements, wind currents, temperature, etc. The waveform response comes from the underlying cyclical motions of the planet, which eventually drag all the transients into harmony with them. The repeated glaciations of the Pleistocene were caused by the same factors.

Milankovitch Cycles

Glaciation in the Pleistocene was a series of glacials and interglacials, stadials and interstadials, mirroring periodic changes in climate. The main factor at work in climate cycling is now believed to be Milankovitch cycles. These are periodic variations in regional solar radiation caused by the sum of a number of repeating changes in the Earth's motion.

Milankovitch cycles cannot be the sole factor, as they do not explain the start and end of the Pleistocene ice age, or repeated ice ages. They seem to work best within the Pleistocene, predicting a glaciation once every 100,000 years.

Oxygen Isotope Ratio Cycles

In oxygen isotope ratio analysis, variations in the ratio of O-18 to O-16 (two isotopes of oxygen) by mass (measured by a mass spectrometer) present in the calcite of oceanic core samples is used as a diagnostic of ancient ocean temperature change and therefore of climate change. Cold oceans are richer in O-18, which is included in the shells of the microorganisms contributing the calcite.

A more recent version of the sampling process makes use of modern glacial ice cores. Although less rich in O-18 than sea water, the snow that fell on the glacier year by year nevertheless contained O-18 and O-16 in a ratio that depended on the mean annual temperature.

Temperature and climate change are cyclical when plotted on a graph of temperature versus time. Temperature coordinates are given in the form of a deviation from today's annual mean temperature, taken as zero. This sort of graph is based on another of isotope ratio versus time. Ratios are converted to a percentage difference (δ) from the ratio found in standard mean ocean water (SMOW).

The graph in either form appears as a waveform with overtones. One half of a period is a Marine isotopic stage (MIS). It indicates a glacial (below zero) or an interglacial (above zero). Overtones are stadials or interstadials.

According to this evidence, Earth experienced 44 MIS stages beginning at about 2.4 MYA in the Pliocene. Pliocene stages were shallow and frequent. The latest were the most intense and most widely spaced.

By convention, stages are numbered from the Holocene, which is MIS1. Glacials receive an even number; interglacials, odd. The first major glacial was MIS22 at about 850,000 YA. The largest glacials were 2, 6 and 12; the warmest interglacials, 1, 5, 9 and 11. For matching of MIS numbers to named stages, see under the articles for those names.

Pleistocene fauna

Both marine and continental faunas were essentially modern. Scientific evidence indicates that humans evolved into their present form during the Pleistocene.

A major extinction event of large mammals (megafauna), which included mammoths, mastodons, saber-toothed cats, glyptodons, ground sloths, and short-faced bears, began late in the Pleistocene and continued into the Holocene. Neanderthals also became extinct during this period.

The extinctions were especially severe in North America where native horses and camels were eliminated.

North American Land Mammal Ages (NALMA) are Blancan (4.5-1.2), Irvingtonian (1.2-0.5) and Rancholabrean (0.5-0.01) in millions of years. The Blancan extends significantly back into the Pliocene.

South American Land Mammal Age (SALMA) are Uquian (2.5-1.5), Ensenadan (1.5-0.3) and Lujanian (0.3-0.01) in millions of years. The Uquian extends significantly back into the Pliocene.

In Europe the faunal stages are Calabrian (1.806-0.781), Sicilian (0.781-0.26) and Tyrrhenian (0.26-0.005).[6]

See also

Paleoclimatology Paleobotany

Pleistocene deposits

Pleistocene continental deposits are found primarily in lakebeds, loess deposits and caves as well as in the large amounts of material moved about by glaciers. Pleistocene marine deposits are found primarily in areas within a few tens of kilometers of the modern shoreline. In a few geologically active areas such as the Southern California coast, Pleistocene marine deposits may be found at elevations of several hundred meters.

See also

References
ISBN links support NWE through referral fees

  1. Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J., Wilson, D., (2004) “The Neogene Period”. In: Gradstein, F., Ogg, J., Smith, A.G. (Eds.), A Geologic Time Scale 2004. Cambridge: Cambridge University Press.
  2. Svensson, A., S. W. Nielsen, S. Kipfstuhl, S. J. Johnsen, J. P. Steffensen, M. Bigler, U. Ruth, and R. Röthlisberger (2005) "Visual stratigraphy of the North Greenland Ice Core Project (NorthGRIP) ice core during the last glacial period" Journal of Geophysical Research 110: (D02108)
  3. 3.0 3.1 3.2 Clague, John et al. (2006) "Open Letter by INQUA Executive Committee" Quaternary Perspective, the INQUA Newsletter International Union for Quaternary Research 16(1):
  4. Pillans, Brad (2004) "Update on Defining the Quaternary" Quaternary Perspective, the INQUA Newsletter International Union for Quaternary Research 14(2):
  5. Clague, John J. "INQUA, IUGS, and the 32nd International Geological Congress" Quaternary Perspective, the INQUA Newsletter International Union for Quaternary Research 14(2):
  6. GeoWhen Database - Comparision of Regional Geologic Nomenclature;

External links

Commons-logo.svg
Wikimedia Commons has media related to:


Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.