Hormone

From New World Encyclopedia
The structure of epinephrine (adrenaline), a neurohormone involved in stimulating the "fight-or-flight" response.

Hormones are secreted chemical messengers that coordinate the activities of different cells in multicellular organisms. An enormous range of chemicals, including small molecules, amino acid-chains called peptides, proteins, and lipid-derived compounds, are used for this type of cell-to-cell communication.

The term hormone (from the Greek “to spur on”) was first used by biochemists William Bayliss and Ernest Starling in 1904 to describe the action of secretin. Their research generated three key concepts:

  1. Hormones are molecules synthesized by specific tissues (glands).
  2. They are secreted directly into the blood, which carries them to their sites of action.
  3. They specifically alter the activities of responsive cells (called target cells), which have receptors for the signaling molecules.

In vertebrates, hormones belong to the endocrine system, a control system of ductless glands and single cells. In humans, there are eight main glands that generally are considered part of the endocrine system: adrenal gland, pituitary gland, hypothalamus, pancreas, thyroid gland, pineal gland, parathyroid gland, and the reproductive glands. Other organs of the body also produce and secrete hormones, but are generally not considered part of the endocrine system; these include the heart, kidney, liver, thymus, skin, and placenta.

Broadly conceived, the role of hormones is to help maintain the homeostasis of a living organism: i.e., to regulate its internal environent. Hormonal effects vary widely and may include:

  • stimulation or inhibition of growth and development
  • activation or inhibition of the immune system
  • regulation of metabolism (the breakdown or synthesis of biological molecules that yield chemical energy)
  • preparation for a new activity in response to environmental stimuli (e.g., fighting, fleeing, mating)
  • preparation for a new phase of life (e.g., puberty, caring for offspring, menopause)
  • control of the reproductive cycle

Although scientific research has focused on the function of hormones in vertebrates, hormones play important roles in other multicellular organisms. The insect hormone ecdysome triggers the metamorphosis of larvae to adults, Plants produce a variety of hormones involved in processes such as cell growth and differentiation (auxins), stem elongation (gibberellins), and fruit ripening (ethylene).

[Neurohormones et al. as challenging traditional definition/schema.]

Types of signaling

In animals, there are three types of signaling by extracellular, secreted molecules—endocrine, paracrine, or autocrine—based on the distance over which the signal acts.

Hormones belong to the first type: they act on target cells distant from their site of synthesis by cells of the endocrine organs. In animals, an endocrine hormone is usually carried by the blood from its site of release to the target cell.

Paracrine signaling molecules only affect target cells in close proximity (an example is the conduction of an impulse down an xyz), while autocrine cells respond to substances that they themselves release.

However, the designations above are not so clear-cut, as some compounds can act in two or even three types of signaling. For example, certain small peptides function both as neurotransmitters (paracrine signaling) and as hormones (endocrine signaling). These neurohormones, produced by neurosecretory cells primarily in the brain, are distinguished from classical neurotransmitters in that they are able to affect cells distant from their source.

How hormones transmit signals

Hormonal signaling typically involves the following six steps:

  1. Biosynthesis of the hormone in a specialized tissue.
  2. Storage and secretion of the hormone.
  3. Transport of the hormone to the target cell(s), often via the bloodstream.
  4. Recognition of the hormone by an associated cell membrane or intracellular receptor protein.
  5. Relay and amplification of the received hormonal signal via a signal transduction process.
  6. Removal of the signal, which often involves degradation of the hormone, to terminate the cellular response.

The technical term for an extracellular signal molecule (such as a hormone or a neurotransmiatter) is ligand. The ligand binds to, or “fits,” a site on the receptor protein, which is located on the surface of a target cell or in its nucleus or cytosol; binding causes a conformational change that initiates a sequence of reactions leading to a change in cellular function.

Different cells respond differently to the same ligand. In addition, different receptor-ligand complexes can induce the same biochemical response in some cell types. For example, the hormones glucagon and epinephrine both induce increased glucose breakdown in liver cells.

Some hormones bind to receptors embedded in the plasma membrane at the surface of the cell, while others are able to interact with receptors inside the cell (either in the nucleus or the cytoplasm). The former require the aid of molecules called second messengers, such as [[cyclic AMP], which convey the signal within the cell.

Major classes of vertebrate hormones and their function

Vertebrate hormones may be classified by their chemical make-up. Alternatively, they may be grouped by their solubility and mode of action (i.e., whether they bind to intracellular receptors or to receptors on the cell surface). According to this latter schema, there are three categories of vertebrate hormones:

  • Small lipophilic (lipid-soluble) molecules that are able to diffuse across the plasma membrane of the target cell and interact with intracellular receptors of the cytoplasm or [[nucleus. The resulting complexes bind to transcription-control regions in DNA, affecting expression of specific genes. The steroid hormones and thyroxine are two examples of this type.
  • Lipophilic molecules that bind to cell-surface receptors, such as the eicosanoids.
  • Hydrophilic (water-soluble) molecules that bind to receptors on the cell surface because they cannot diffuse across cell membrane. There are two subgroups: (a) peptide hormones, such as insulin, growth hormone, and glucagon, which range in size from a few amino acids to protein-size compounds and (b) small charged molecules, such as epinephrine and histamine, derived from amino acids, which function as both hormones and neurotransmitters.

Lipophilic molecules that diffuse across the plasma membrane

Cholesterol is an important precursor of the steroid hormones, which produce their physiological effects by binding to steroid hormone receptor proteins inside the cytoplasm of the cell. The combined hormone-receptor complex then moves into the nucleus of the cell, where it binds to specific DNA sequences, causing changes in gene transcription and cell function.

Steroids, such as cholesterol and the steroid hormones, are characterized by a carbon skeleton with four fused rings. They are distinguished by the functional groups attached to the rings.

The five major classes of steroids are as follows:

Thyroxine, produced by thyroid cells, also binds to internal receptors. Thyroid hormones stimulate the breakdown of glucose, fats, and proteins by increasing the levels of many enzymes that catalyze these metabolic reactions.

Lipophilic molecules that bind to cell-surface receptors

Eicosanoids are 20-carbon fatty acids derived from arachidonic acid; the group includes prostaglandins, prostacyclins, thromboxanes, and leukotrienes. Eicosanoids are considered local hormones because they are short-lived; they alter the activities in cells where they are synthesized (autocrine signaling) and in nearby cells (paracrine signaling). Prostaglandins may stimulate inflammation, regulate blood flow, control transport, and induce sleep. Aspirin, for example, works as an anti-inflammatory agent by inhibiting the synthesis of prostaglandin.

Hydrophilic molecules that bind to cell-surface receptors

  • Peptide hormones consist of chains of amino acids. Examples of small peptide hormones are TRH and vasopressin. Peptides composed of scores or hundreds of amino acids are referred to as proteins. Examples of protein hormones include insulin and growth hormone. More complex protein hormones bear carbohydrate side chains and are called glycoprotein hormones. Luteinizing hormone, follicle-stimulating hormone and thyroid-stimulating hormone are glycoprotein hormones.
  • Amino-acid derived hormones include the catecholamines, chemical compounds derived from the amino acid tyrosine. Catecholamines are water soluble and are 50% bound to plasma proteins, so they circulate in the bloodstream. The most abundant catecholamines are epinephrine (adrenaline), norepinephrine (noradrenaline) and dopamine. Released by the adrenal glands in situations of stress, catecholamines cause general physiological changes that prepare the body for physical activity (fight-or-flight response). Some typical effects are increases in heart rate, blood pressure, blood glucose levels, and a general reaction of the sympathetic nervous system.

Histamine, a hormone and neurotransmitter derived from the amino acid histidine, is involved in the dilation of blood vessels.

The table below provides some examples of water-soluble hormones that bind to cell-surface receptors. The size of the hormone is given in amino acids; note that the — have two polypeptide chains of varying lengths.

Type Name Size Origin Major effects
Peptide Follicle-stimulating hormone (FSH) alpha 92, beta 118 anterior pituitary Stimulates growth of oocytes and ovarian follices
Peptide Glucagon 29 pancreas alpha cells Stimulates glucose synthesis
Peptide Insulin a chain 21, b 30 pancreas beta cells Regulates glucose uptake; stimulates cell proliferation
Peptide Luteinizing hormone (LH) 10, beta chain 115 anterior pituitary maturation of oocyte; stimulates estrogen and progesterone secretion by ovarian follices
Growth factor nerve growth factor (NGF) 118 all tissues innervated by sympathetic neurons growth and differentiation of sympathetic neurons
Growth factor Epidermal growth factor (EGF) 53 salivary and other glands? Growth of epidermal and other body cells
Growth factor Plactelet-derived growth factor a: 125; b: 109 platelets and cells in many other tissues Proliferation of fibroblasts and other cell types; wound healing
Neurohormone Oxytoxin 9 posterior pituitary gland Stimulation of smooth muscle contraction
Neurohormone Vasopressin 9 posterior pituitary gland Stimulation of water reabsorption in the kidney

Regulation

An important consideration, dictating the level at which cellular signal transduction pathways are activated in response to a hormonal signal is the effective concentration of hormone-receptor complexes that are formed. Hormone-receptor complex concentrations are effectively determined by three factors:

  1. The number of hormone molecules available for complex formation
  2. The number of receptor molecules available for complex formation and
  3. The binding affinity between hormone and receptor.

The number of hormone molecules available for complex formation is usually the key factor in determining the level at which signal transduction pathways are activated. The number of hormone molecules available being determined by the concentration of circulating hormone, which is in turn influenced by the level and rate at which they are secreted by biosynthetic cells. The number of receptors at the cell surface of the receiving cell can also be varied as can the affinity between the hormone and its receptor.

The endocrine system regulates hormone release and concentration through the negative feedback loop. Increases in hormone activity decrease the production and secretion of that hormone. Similarly, a decrease in activity of a hormone prompts an increase in the production and release of that hormone. The immune system as well as other factors contribute as control factors of hormone secretion. Together, these various mechanisms of control regulate the levels of hormones within the body.

By rate of synthesis

Organisms must be able to respond instantly to many changes in their internal or external environment; such rapid responses are mediated primarily by peptide hormones and catecholamines. Signaling cells that produce them store them in secretory vesicles just under the plasma membrane. All peptide hormones, including insulin, are synthesized as part of a longer propolypeptide, which is cleaved (split) by specific enzymes to generate the active molecule just after it is transported to a secretory vesicle. Because of their hydrophilic (water loving) nature, peptide hormones travel freely in the blood as they dissolve. Peptide hormones mediate short responses that are terminated by their own degradation.

In contrast, steroid-producing cells, like those in the adrenal cortex, store a small supply of hormone precursor; when stimulated, they are converted to active hormone, which then diffuses across the cell membrane into the blood. Because cells store little of the active hormone, release takes from hours to days. Steroids are hydrophobic (water-fearing), so they are transported by carrier proteins, and are not rapidly degraded. Thus, responses to thyroxine and steroid hormones take awhile to occur but effects last much longer (hours to days).

By feedback control

The rate of hormone biosynthesis and secretion is often regulated by a homeostatic negative feedback control mechanism. Such a mechanism depends on factors which influence the metabolism and excretion of hormones. Thus, higher hormome concentration alone cannot trigger the negative feedback mechanism. Negative feedback must be triggered by overproduction of an "effect" of the hormone.

feedback control of hormone levels: feedback circuits, in which changes in the level of one hormone affects the levels of other hormones (esp important in coordinating the complex processes of cell growth and differentiation); one ex. includes the regulation of estrogen and progesterone, steroid hormones that stimulate the growth and diff of cells in the tissue lining the interior of the uterus

By other hormones

One special group of hormones is the trophic hormones that stimulate the hormone production of other endocrine glands. For example, thyroid-stimulating hormone (TSH) causes growth and increased activity of another endocrine gland, the thyroid, which increases output of thyroid hormones.

Plant hormones

Plant hormones are internally secreted molecules that typically coordinate the responses of tissues in different areas of the plant to environmental signals, such as light or infection.

Plant hormones are traditionally divided into five major groups, although several additional plant hormones have recently been discovered:

  • Auxin was the first plant hormone to be identified; early experiments leading to its discovery were conducted by Charles Darwin in the 1880s. Auxins regulate various aspects of plant development, including cell division and differentiation.
  • abscisic acid (ABA): the onset of dormancy?
  • cytokinins(CKs): cell division
  • ethylene: fruit ripening
  • gibberellins (GAs): stem elongation

Non-traditional plant hormones include the brassinolides, plant-specific ‘’steroid hormones’’ involved in developmental processes, and xyz.

Pharmacology and cell biology research

Many hormones and their analogues are used as medication. The most commonly-prescribed hormones are estrogens and progestagens (as methods of hormonal contraception and as HRT), thyroxine (as levothyroxine, for hypothyroidism) and steroids (for autoimmune diseases and several respiratory disorders). Insulin is used by many diabetics. Local preparations for use in otolaryngology often contain pharmacologic equivalents of adrenaline, while steroid and vitamin D creams are used extensively in dermatological practice.

A "pharmacologic dose" of a hormone is a medical usage referring to an amount of a hormone far greater than naturally occurs in a healthy body. The effects of pharmacologic doses of hormones may be different from responses to naturally occurring amounts and may be therapeutically useful. An example is the ability of pharmacologic doses of glucocorticoid to suppress inflammation.

The relation between the endocrine and nervous systems

The endocrine system works in close relation with the nervous system. It links the brain to the organs that control various aspects of the body. In addition, neurohormones are released by specialized groups of neurons in the brain. These function similarly to hormones and are often categorized into three major groups: catecholamines; hypothalamic neurohormones that monitor hormone release from the anterior pituitary; and hypothalamic neurohormones that monitor hormone release from the posterior pituitary. Neuroendocrinology is an area of medicine that focuses on the overlapping fields between the nervous and endocrine systems.

Tables

[retain table?] Spelling is not uniform for many hormones. For example, current North American and international usage is estrogen, gonadotropin, while British usage retains the Greek diphthong in oestrogen and the unvoiced aspirant h in gonadotrophin.

Structure Name Abbreviation Tissue Cells Mechanism
amine - tryptophan Melatonin (N-acetyl-5-methoxytryptamine) pineal gland pinealocyte
amine - tryptophan Serotonin 5-HT CNS, GI tract enterochromaffin cell
amine - tyrosine Thyroxine (thyroid hormone) T4 thyroid gland thyroid epithelial cell direct
amine - tyrosine Triiodothyronine (thyroid hormone) T3 thyroid gland thyroid epithelial cell direct
amine - tyrosine (cat) Epinephrine (or adrenaline) EPI adrenal medulla chromaffin cell
amine - tyrosine (cat) Norepinephrine (or noradrenaline) NRE adrenal medulla chromaffin cell
amine - tyrosine (cat) Dopamine DPM hypothalamus
peptide Antimullerian hormone (or mullerian inhibiting factor or hormone) AMH testes Sertoli cell
peptide Adiponectin Acrp30 adipose tissue
peptide Adrenocorticotropic hormone (or corticotropin) ACTH anterior pituitary corticotrope cAMP
peptide Angiotensinogen and angiotensin AGT liver IP3
peptide Antidiuretic hormone (or vasopressin, arginine vasopressin) ADH posterior pituitary varies
peptide Atrial-natriuretic peptide (or atriopeptin) ANP heart cGMP
peptide Calcitonin CT thyroid gland parafollicular cell cAMP
peptide Cholecystokinin CCK duodenum
peptide Corticotropin-releasing hormone CRH hypothalamus cAMP
peptide Erythropoietin EPO kidney
peptide Follicle-stimulating hormone FSH anterior pituitary gonadotrope cAMP
peptide Gastrin GRP stomach, duodenum G cell
peptide Ghrelin stomach P/D1 cell
peptide Glucagon GCG pancreas alpha cells cAMP
peptide Gonadotropin-releasing hormone GnRH hypothalamus IP3
peptide Growth hormone-releasing hormone GHRH hypothalamus IP3
peptide Human chorionic gonadotropin hCG placenta syncytiotrophoblast cells cAMP
peptide Human placental lactogen HPL placenta
peptide Growth hormone GH or hGH anterior pituitary somatotropes
peptide Inhibin testes Sertoli cells
peptide Insulin INS pancreas beta cells tyrosine kinase
peptide Insulin-like growth factor (or somatomedin) IGF liver tyrosine kinase
peptide Leptin LEP adipose tissue
peptide Luteinizing hormone LH anterior pituitary gonadotropes cAMP
peptide Melanocyte stimulating hormone MSH or α-MSH anterior pituitary/pars intermedia cAMP
peptide Oxytocin OXT posterior pituitary IP3
peptide Parathyroid hormone PTH parathyroid gland parathyroid chief cell cAMP
peptide Prolactin PRL anterior pituitary lactotrophs
peptide Relaxin RLN varies
peptide Secretin SCT duodenum S cell
peptide Somatostatin SRIF hypothalamus, islets of Langerhans delta cells
peptide Thrombopoietin TPO liver, kidney
peptide Thyroid-stimulating hormone TSH anterior pituitary thyrotropes cAMP
peptide Thyrotropin-releasing hormone TRH hypothalamus IP3
steroid - glu. Cortisol adrenal cortex (zona fasciculata) direct
steroid - min. Aldosterone adrenal cortex (zona glomerulosa) direct
steroid - sex (and) Testosterone testes Leydig cells direct
steroid - sex (and) Dehydroepiandrosterone DHEA multiple direct
steroid - sex (and) Androstenedione adrenal glands, gonads direct
steroid - sex (and) Dihydrotestosterone DHT multiple direct
steroid - sex (est) Estradiol E2 ovary granulosa cells direct
steroid - sex (est) Estrone ovary granulosa cells direct
steroid - sex (est) Estriol placenta syncytiotrophoblast direct
steroid - sex (pro) Progesterone ovary, adrenal glands, placenta granulosa cells direct
sterol Calcitriol (Vitamin D3) skin/proximal tubule of kidneys direct
eicosanoid Prostaglandins PG seminal vesicle
eicosanoid Leukotrienes LT white blood cells
eicosanoid Prostacyclin PGI2 endothelium
eicosanoid Thromboxane TXA2 platelets

References
ISBN links support NWE through referral fees

  • Beato, M., Chavez, S., and M. Truss. 1996. Transcriptional regulation by steroid hormones. Steroids 61(4): 240-251. PMID 8733009
  • Cooper, G. M., and R. E. Hausman. 2004. The Cell: A Molecular Approach, 3rd edition. Washington, D.C.: ASM Press & Sunderland, M.A.: Sinauer Associates. ISBN 0878932143
  • Hammes, S.R. 2003. The further redefining of steroid-mediated signaling. Proc Natl Acad Sci 100(5): 2168-70 PMID 12606724
  • Lodish, H., D. Baltimore, A. Berk, S. L. Zipursky, P. Matsudaira, and J. Darnell. 1995. Molecular Cell Biology, 3rd edition. New York, NY: Scientific American Books. ISBN 0716723808.
  • Mathews, C.K. and K.E. van Holde. 1990. Biochemistry. San Francisco: Benjamin-Cummings. ISBN 0805350152
  • Stryer, L. 1995. Biochemistry, 4th edition. New York: W.H. Freeman. ISBN 0716720094

External links


Hormones and endocrine glands - edit

Hypothalamus: GnRH - TRH - CRH - GHRH - somatostatin - dopamine | Posterior pituitary: vasopressin - oxytocin | Anterior pituitary: GH - ACTH - TSH - LH - FSH - prolactin - MSH - endorphins - lipotropin

Thyroid: T3 and T4 - calcitonin | Parathyroid: PTH | Adrenal medulla: epinephrine - norepinephrine | Adrenal cortex: aldosterone - cortisol - DHEA | Pancreas: glucagon- insulin - somatostatin | Ovary: estradiol - progesterone - inhibin - activin | Testis: testosterone - AMH - inhibin | Pineal gland: melatonin | Kidney: renin - EPO - calcitriol - prostaglandin | Heart atrium: ANP

Stomach: gastrin | Duodenum: CCK - GIP - secretin - motilin - VIP | Ileum: enteroglucagon | Liver: IGF-1

Placenta: hCG - HPL - estrogen - progesterone

Adipose tissue: leptin, adiponectin

Target-derived NGF, BDNF, NT-3

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.