Difference between revisions of "Air bag" - New World Encyclopedia

From New World Encyclopedia
(Reformatted Notes.)
m
Line 19: Line 19:
 
Airbags for passenger cars were introduced in the [[United States]] in the mid-1970s, when [[seat belt]] usage was not prevalent. Airbags were generally considered a convenient alternative to seat belts, while offering similar levels of protection to unbelted occupants in a [[head-on collision]].
 
Airbags for passenger cars were introduced in the [[United States]] in the mid-1970s, when [[seat belt]] usage was not prevalent. Airbags were generally considered a convenient alternative to seat belts, while offering similar levels of protection to unbelted occupants in a [[head-on collision]].
  
[[Ford Motor Company|Ford]] built an experimental fleet of cars with airbags in 1971, followed by [[General Motors]] in 1973 on Chevrolet vehicles. In 1974 General Motors adopted the technology for other brands like Buick, Cadillac and Oldsmobile, and offered dual airbags with two-stage deployment,<ref>[http://img145.imageshack.us/img145/8004/acrs56dt.jpg Airbag Deployment illustrations.] imageshack. Retrieved August 13, 2008.</ref> and called them "Air Cushion Restraint System".<ref>http://img145.imageshack.us/img145/2507/acrs9ad.jpg Buick Owners Manual Cover.] imageshack. Retrieved August 13, 2008.</ref>  The early fleet of experimental GM vehicles equipped with airbags experienced seven fatalities, one of which was later suspected to have been caused by the airbag.
+
[[Ford Motor Company|Ford]] built an experimental fleet of cars with airbags in 1971, followed by [[General Motors]] in 1973 on Chevrolet vehicles. In 1974 General Motors adopted the technology for other brands like Buick, Cadillac and Oldsmobile, and offered dual airbags with two-stage deployment,<ref>[http://img145.imageshack.us/img145/8004/acrs56dt.jpg Airbag Deployment illustrations.] imageshack. Retrieved August 13, 2008.</ref> and called them "Air Cushion Restraint System".<ref>[http://img145.imageshack.us/img145/2507/acrs9ad.jpg Buick Owners Manual Cover.] imageshack. Retrieved August 13, 2008.</ref>  The early fleet of experimental GM vehicles equipped with airbags experienced seven fatalities, one of which was later suspected to have been caused by the airbag.
  
 
The development of airbags coincided with an international interest in [[Automobile safety|automobile safety]] legislation. Some safety experts cautioned against mandating a particular technical solution, rather than a general occupancy safety standard, which could rapidly date out and might not be a cost-effective approach. Motor manufacturers favoured one standard over another, which could not easily be changed. As countries successively mandated seat belt restraints, there was less emphasis placed on other designs for several decades.<ref name=thetimes/>
 
The development of airbags coincided with an international interest in [[Automobile safety|automobile safety]] legislation. Some safety experts cautioned against mandating a particular technical solution, rather than a general occupancy safety standard, which could rapidly date out and might not be a cost-effective approach. Motor manufacturers favoured one standard over another, which could not easily be changed. As countries successively mandated seat belt restraints, there was less emphasis placed on other designs for several decades.<ref name=thetimes/>

Revision as of 03:27, 13 August 2008

Automobile air bags like the ones in this Peugeot 306 car, inflate and deflate within a fraction of a second.

An air bag,[1] also known as an Air Cushion Restraint System (ACRS), or the Supplemental Inflatable Restraint (SIR) (reflecting the airbag system's intended role as a supplement to conventional restraints such as seat belts), is a flexible envelope commonly used for cushioning against hard interior objects (such as steering wheels), in particular for rapid inflation in the case of an automobile collision. It is a "passive" safety component, rather than an "active" component (that is: it reacts after an accident has happened, rather than helping to avoid an accident in the first instance, like ABS or ESP).

Air bags constitute one component of a number of complementary components that fall under the umbrella term of Safety Restraint System, also known as Supplementary Restraint System (SRS). Air bags are designed to complement conventional restraints, such as seat belts, and seatbelt pre-tensioners, not replace them. Other additional passive automotive safety features include "anti-submarine" seats, telescopically collapsible steering columns, "brake away" control pedals (accelerator/brake/clutch), toughened and/or laminated glass

The number of lives saved by airbags is hard to pin down. One study, cited below, puts the number at just under 400 per year (6,000 total), and another study indicates that airbags reduce fatalities by 8% when seat belts are worn. Airbags also greatly increase the efficiency of seat-belts, in some cases up to 50%.[citation needed]

History

1975 Buick Electra Limited with ACRS

Invention

John W. Hetrick of Newport, Pennsylvania, USA invented the airbag in 1952, and patented his device in 1953. Hetrick came up with the idea to help protect his own family using expertise from his naval engineering days[2]. Throughout the years, the saving of many lives have been attributed to Hetrick's invention, and highlighted in television shows such as Nova on PBS, or his winning of awards such as the Golden Gear award. There have been devices similar to airbags for airplanes as early as the 1940s, with the first patents filed for those devices in 1958. Early airbag system origins traces back to air filled bladders. These systems were large and bulky, and primarily consisted of compressed or heated air, compressed nitrogen gas (N2), freon, carbon dioxide (CO2), or a mixture of water and potassium (KH2O).[3]

An American inventor Allen K. Breed then developed a key component for automotive use - the ball-in-tube sensor for crash detection. He marketed this innovation first in 1967 to Chrysler. A similar "Auto-Ceptor" crash-restraint, developed by Eaton, Yale & Towne Inc. for Ford was soon offered as an automatic safety system in the USA, while the Italian Eaton-Livia company offered a variant with localized air cushions.[4]

First automotive applications: an alternative to the seatbelt

Airbags for passenger cars were introduced in the United States in the mid-1970s, when seat belt usage was not prevalent. Airbags were generally considered a convenient alternative to seat belts, while offering similar levels of protection to unbelted occupants in a head-on collision.

Ford built an experimental fleet of cars with airbags in 1971, followed by General Motors in 1973 on Chevrolet vehicles. In 1974 General Motors adopted the technology for other brands like Buick, Cadillac and Oldsmobile, and offered dual airbags with two-stage deployment,[5] and called them "Air Cushion Restraint System".[6] The early fleet of experimental GM vehicles equipped with airbags experienced seven fatalities, one of which was later suspected to have been caused by the airbag.

The development of airbags coincided with an international interest in automobile safety legislation. Some safety experts cautioned against mandating a particular technical solution, rather than a general occupancy safety standard, which could rapidly date out and might not be a cost-effective approach. Motor manufacturers favoured one standard over another, which could not easily be changed. As countries successively mandated seat belt restraints, there was less emphasis placed on other designs for several decades.[4]

Rebirth: supplemental restraint

Car designers have moved on from the initial view of the airbag as a seat belt replacement. Automobile airbags are now designed and marketed as Supplemental Restraint Systems (SRS).

In 1980, Mercedes-Benz re-introduced the airbag in Germany that it had patented in 1971, as an option on its high-end S-Class (W126), which also offered such other exotic options as hydropneumatic suspension. In the Mercedes system, the sensors would tighten the seat belts, and then deploy the airbag on impact. The airbag was thus no longer marketed as a means of avoiding seat belts, but as a way to obtain an extra margin of occupant safety.

In 1987, the Porsche 944 turbo became the first car in the world to have driver and passenger airbags as standard equipment. The Porsche 944 and 944S had this as an available option. This year also saw the first airbag in a Japanese car, the Acura Legend.

Audi was relatively late to offer airbag systems on a broader scale; until the 1994 model year, for example, the 80/90, by far Audi's 'bread-and-butter' model, as well as the 100/200, did not have airbags in their standard versions. Instead, the German automaker until then relied solely on its proprietary procon-ten restraint system.

Airbags became common in the 1980s, with Chrysler and Ford introducing them in the mid-1980s; the former made them standard equipment across its entire line in 1990.

In Europe, airbags were almost unheard of on family cars until the early 1990s. The first European Ford to feature an airbag was the facelifted Escort MK5b in 1992; within a year, the entire Ford range had at least one airbag as standard. By the mid 1990s, European market leaders such as Vauxhall/Opel, Rover, Peugeot, Renault and Fiat had included airbags as at least optional equipment across their model ranges. By the end of the decade, it was very rare to find a mass market car without an airbag, and some late 1990s products, such as the Volkswagen Golf Mk4 also featured side airbags. The Peugeot 306 was a classical example of how commonplace airbags became on mass market cars during the 1990s. On its launch in early 1993 most of the range did not even have driver airbags as an option. By 1999 however, side airbags were available on several variants.

During the 2000s side airbags were commonplace on even budget cars, such as the smaller-engined versions of the Ford Fiesta and Peugeot 206, and curtain airbags were also becoming regular features on mass market cars. The Toyota Avensis, launched in 1998, was the first mass market car to be sold in Europe with a total of nine airbags.

Airbags become mandatory

On 11 July 1984, the U.S. government required cars being produced after 1 April 1989 to have driver's side airbags or automatic seat belts (the automatic seat belt was a technology, now discarded, that "forced" motorists to wear seatbelts). Airbag introduction was stimulated by the U.S. DOT.[7] However, airbags were not mandatory on light trucks until 1995.[citation needed]

In 1998 dual front airbags were mandated by the National Highway Traffic Safety Administration (NHTSA), and de-powered, or second-generation airbags were also mandated. This was due to the injuries caused by first-generation airbags that were designed to be powerful enough to restrain people who were not wearing seat belts.

In the United Kingdom, and most other developed countries there is no direct legal requirement for new cars to feature airbags. Instead, the Euro NCAP vehicle safety rating encourages manufacturers to take a comprehensive approach to occupant safety; a good rating can only be achieved by combining airbags with other safety features.[8] Thus almost all new cars now come with at least two airbags as standard.

Side-impact airbags

Side airbag inflated permanently for display purposes

Side-impact airbags are a category of airbag usually located in the seat, and inflate between the seat occupant and the door.

These are specifically designed to reduce the risk of injury to the pelvis and lower abdomen. Some vehicles are now being equipped with a different types of designs, to help reduce injury and ejection from the vehicle in rollover crashes.

The Swedish company Autoliv AB, was granted a patent on side airbags, and they were first offered as an option on the 1995 model year Volvo 850, and as standard equipment on all Volvo cars made after 1995. The first 'head protection' airbags were included as standard equipment in the model year 1998 BMW 7-series and E39 5-series.

In late 1997 the BMW 7-series and E39 5-series were fitted with head side airbags, the "Head Protection System (HPS)." This is an industry's first in offering head protection to the front seat passengers in side impact collisions.[9] This airbag will maintain inflation for up to seven seconds for rollover protection. However, this tubular shaped airbag is replaced by a inflatable 'curtain' airbags for superior protection.

In 1998 the Volvo S80 was first given curtain airbags to protect both front and rear passengers. They were then made standard equipment on all new Volvo cars from 1998. The Volvo Curtain Airbag design is now considered to be superior by most car manufacturers and is the one mostly used; in some cars it has been designed to stay inflated for rollover crashes.

The many SUVs and MPVs have a long inflatable curtain airbag that protects all 3 rows of seats manufactured in recent years.

Curtain airbags have been said to reduce brain injury or fatalities by up to 45% in a side impact with an SUV. These airbags come in various forms (e.g., tubular, curtain, door-mounted) depending on the needs of the application.[10]

Motorcycle airbags

In 2006 Honda introduced the first motorcycle airbag safety system on its Gold Wing motorcycle.

Other airbag design

The Citroën C4 provides the first "shaped" driver airbag, made possible by this car's unusual fixed hub steering wheel.[citation needed]

Dual-stage airbags

Many advanced airbag technologies are being developed to tailor airbag deployment to the severity of the crash, the size and posture of the vehicle occupant, belt usage, and how close that person is to the actual airbag. Many of these systems use multi-stage inflators that deploy less forcefully in stages in moderate crashes than in very severe crashes. Occupant sensing devices let the airbag control unit know if someone is occupying a seat adjacent to an airbag, the mass/weight of the person, whether a seat belt or child restraint is being used, and whether the person is forward in the seat and close to the airbag. Based on this information and crash severity information, the airbag is deployed at either a high force level, a less forceful level, or not at all.

Adaptive airbag systems may utilize multi-stage airbags to adjust the pressure within the airbag. The greater the pressure within the airbag, the more force the airbag will exert on the occupants as they come in contact with it. These adjustments allow the system to deploy the airbag with a moderate force for most collisions; reserving the maximum force airbag only for severest of collisions. Additional sensors to determine the location, weight or relative size of the occupants may also be used. Information regarding the occupants and the severity of the crash are used by the airbag control unit, to determine whether airbags should be suppressed or deployed, and if so, at various output levels.

Airbags in certain car models deploy twice, for two crashes; it first deploys and deflates, and then re-inflates upon a subsequent collision.[citation needed]

How airbags work

An ACU from a Geo Storm.

The design is conceptually simple; a central "Airbag control unit"[11] (ACU) (a specific type of ECU) monitors a number of related sensors within the vehicle, including accelerometers, impact sensors, wheel speed sensors, gyroscopes, brake pressure sensors, and seat occupancy sensors. When the requisite 'threshold' has been reached or exceeded, the airbag control unit will trigger the ignition of a gas generator propellant to rapidly inflate a nylon fabric bag. The inflated airbag reduces the deceleration experienced by the passenger during the crash through the process of venting gas out of small vent holes in a controlled manner absorbing the energy of the occupant impacting the bag. The airbag's volume and the size of the vents in the bag are tailored to each vehicle type, to dissipate the occupant's energy over time and distribute the deceleration forces across a larger portion of the occupant's body (compared to a seat belt alone).

The different signals from the various sensors are fed into the Airbag control unit, and this determines the angle of impact, the severity, or force of the crash, along with other variables. Depending on the result of these calculations, the ACU may also deploy various additional restraint devices, such as seat belt pre-tensioners, and/or airbags (including frontal bags for driver and front passenger, along with seat-mounted side bags, and "curtain" airbags wich cover the side glass). Each restraint device is typically activated with one or more pyrotechnic devices, commonly called an initiator or electric match. The electric match, which consists of an electrical conductor wrapped in a combustible material, activates with a current pulse between 1 to 3 amperes in less than 2 milliseconds. When the conductor becomes hot enough, it ignites the the combustible material, which initiates the gas generator. In a seat belt pre-tensioner, this hot gas is used to drive a piston that pulls the slack out of the seat belt. In an airbag, the initiator is used to ignite solid propellant inside the airbag inflater. The burning propellant generates inert gas which rapidly inflates the airbag in approximately 20 to 30 milliseconds. An airbag must inflate quickly in order to be fully inflated by the time the forward-traveling occupant reaches its outer surface. Typically, the decision to deploy an airbag in a frontal crash is made within 15 to 30 milliseconds after the onset of the crash, and both the driver and passenger airbags are fully inflated within approximately 60-80 milliseconds after the first moment of vehicle contact. If an airbag deploys too late or too slowly, the risk of occupant injury from contact with the inflating airbag may increase. Since more distance typically exists between the passenger the instrument panel, the passenger airbag is larger and requires more gas to fill it.

Front airbags normally do not protect the occupants during side, rear, or rollover accidents. [12] Since airbags deploy only once and deflate quickly after the initial impact, they will not be beneficial during a subsequent collision. Safety belts help reduce the risk of injury in many types of crashes. They help to properly position occupants to maximize the airbag's benefits and they help restrain occupants during the initial and any following collisions.

In vehicles equipped with a rollover sensing system, accelerometers and gyroscopes are used to sense the onset of a rollover event. If a rollover event is determined to be imminent, side-curtain airbags are deployed to help protect the occupant from contact with the side of the vehicle interior, and also to help prevent occupant ejection as the vehicle rolls over.

Triggering conditions

Airbags are designed to deploy in frontal and near-frontal collisions that are more violent than a 23 km/h (14 mph) barrier collision, or similarly, striking a parked car of similar size across the full front of each vehicle at about twice the speed. (The parked car absorbs some of the energy of the crash.)

Unlike crash tests into barriers, real-world crashes typically occur at angles, and the crash forces usually are not evenly distributed across the front of the vehicle. Consequently, the relative speed between a striking and struck vehicle required to deploy the airbag in a real-world crash can be much higher than an equivalent barrier crash. Because airbag sensors measure deceleration, vehicle speed and damage are not good indicators of whether an airbag should have deployed. Airbags can deploy due to the vehicle's undercarriage striking a low object protruding above the roadway due to the resulting deceleration.

The airbag sensor is a MEMS accelerometer, which is a small integrated circuit with integrated micro mechanical elements. The microscopic mechanical element moves in response to rapid deceleration, and this motion causes a change in capacitance, which is detected by the electronics on the chip that then sends a signal to fire the airbag. The most common MEMS accelerometer in use is the ADXL-50 by Analog Devices, but there are other MEMS manufacturers as well.

Initial attempts using mercury switches did not work well. Before MEMS, the primary system used to deploy airbags was called a "rolamite." A rolamite is a mechanical device, consisting of a roller suspended within a tensioned band. As a result of the particular geometry and material properties used, the roller is free to translate with little friction or hysteresis. This device was developed at Sandia National Laboratories. The rolamite, and similar macro-mechanical devices were used in airbags until the mid-1990s when they were universally replaced with MEMS.

Nearly all airbags are designed to automatically deploy in the event of a vehicle fire when temperatures reach 150-200 °C (300-400 °F).[citation needed] This safety feature, often termed auto-ignition, helps to ensure that such temperatures do not cause an explosion of the entire airbag module.

Today, airbag triggering algorithms are becoming much more complex. They try to reduce unnecessary deployments (for example, at low speed, no shocks should trigger the airbag, to help reduce damage to the car interior in conditions where the seat belt would be an adequate safety device), and to adapt the deployment speed to the crash conditions. The algorithms are considered valuable intellectual property. Experimental algorithms may take into account such factors as the weight of the occupant, the seat location, seatbelt use, and even attempt to determine if a baby seat is present.

Inflation

When the frontal airbags are to deploy, a signal is sent to the inflater unit within the airbag control unit. An igniter starts a rapid chemical reaction generating primarily nitrogen gas (N2) to fill the airbag making it deploy through the module cover. Some airbag technologies use compressed nitrogen or argon gas with a pyrotechnic operated valve ("hybrid gas generator"), while other technologies use various energetic propellants. Propellants containing sodium azide (NaN3) were common in early inflater designs. However, propellants containing the highly toxic sodium azide were widely phased out during the 1990s in pursuit of more efficient, less expensive and less toxic alternatives.

The azide-containing pyrotechnic gas generators contain a substantial amount of the propellant. The driver-side airbag would contain a canister which is 5.0 cm (2") in diameter, 3.8 cm (1.5") long, and contains about 50 grams of sodium azide. The passenger side container is 15 cm (6") long and contains 200 grams of sodium azide.[13] The incomplete combustion of the charge due to rapid cooling leads to production of carbon monoxide (CO) and nitrogen(II) oxide as reaction by-products.[14]

The alternative propellants may incorporate, for example, a combination of nitroguanidine, phase-stabilized ammonium nitrate (NH4NO3) or other nonmetallic oxidizer, and a nitrogen-rich fuel different than azide (eg. tetrazoles, triazoles, and their salts). The burn rate modifiers in the mixture may be an alkaline metal nitrate (NO3-) or nitrite (NO2-), dicyanamide or its salts, sodium borohydride (NaBH4), etc. The coolants and slag formers may be eg. clay, silica, alumina, glass, etc.[15] Other alternatives are eg. nitrocellulose based propellants (which have high gas yield but bad storage stability, and their oxygen balance requires secondary oxidation of the reaction products to avoid buildup of carbon monoxide), or high-oxygen nitrogen-free organic compounds with inorganic oxidizers (e.g., di or tricarboxylic acids with chlorates (ClO3-) or perchlorates (HClO4) and eventually metallic oxides; the nitrogen-free formulation avoids formation of toxic nitrogen oxides).

From the onset of the crash, the entire deployment and inflation process is about 0.05 seconds—faster than the blink of an eye (about 0.2 seconds). Because vehicles change speed so quickly in a crash, airbags must inflate rapidly to reduce the risk of the occupant hitting the vehicle's interior.

Post-deployment

Once an airbag deploys, deflation begins immediately as the gas escapes through vent(s) in the fabric (or, as it's sometimes called, the cushion) and cools. Deployment is frequently accompanied by the release of dust-like particles, and gases in the vehicle's interior (called effluent). Most of this dust consists of cornstarch, french chalk, or talcum powder, which are used to lubricate the airbag during deployment. Newer designs produce effluent primarily consisting of harmless talcum powder/cornstarch and nitrogen gas (about 80% of the air we breathe is nitrogen). In older designs using an azide-based propellant (usually NaN3), varying amounts of sodium hydroxide nearly always are initially present. In small amounts this chemical can cause minor irritation to the eyes and/or open wounds; however, with exposure to air, it quickly turns into sodium bicarbonate (baking soda). However, this transformation is not 100% complete, and invariably leaves residual amounts of hydroxide ion from NaOH. Depending on the type of airbag system, potassium chloride (a table salt substitute) may also be present.

For most people, the only effect the dust may produce is some minor irritation of the throat and eyes. Generally, minor irritations only occur when the occupant remains in the vehicle for many minutes with the windows closed and no ventilation. However, some people with asthma may develop an asthmatic attack from inhaling the dust. With the onset of symptoms, asthmatics should treat themselves as advised by their doctor, then immediately seek medical treatment.

Benefits

Airbags supplement the safety belt by reducing the chance that the occupant's head and upper body will strike some part of the vehicle's interior. They also help reduce the risk of serious injury by distributing crash forces more evenly across the occupant's body. Curtain airbags help to keep all parts of the occupant inside the vehicle.

One recent study concluded that as many as 6,000 lives have been saved as a result of airbags.[16]

Costs

Airbags cost about $500 (USD) per vehicle from OEMs, who typically pay the supplier less than $100. If they are deployed or stolen the registered vehicle owner is required to replace them. Since they are an integral part of the vehicle design, airbags are not commonly retrofitted to a vehicle which does not have them.

Most manufacturers specify the replacement of undeployed airbags after a certain period to ensure their reliability in an accident.

Although self installation of used or surplus components may result in considerable cost savings, airbags should only be serviced by those who are properly qualified. Accidental deployment while servicing could result in severe injury, and an improperly installed or defective airbag unit may not provide sufficient protection in an accident. For these reasons, laws limiting sale, shipping, handling and maintenance have been imposed in several countries. In Germany, where some of the strictest laws are in place, airbags count as harmful explosives, and only car mechanics with additional special training are allowed to service airbag systems. Under German Federal Law, used but intact airbags are to be detonated under secure conditions, and must not be passed on to third parties in any way, and private (i.e. layman) individuals are not allowed to handle airbags under any circumstances. Legal purchase is restricted to buying a new replacement unit for immediate installation by the seller's qualified personnel.

Airbag injuries and fatalities

Template:Cleanup-section Airbags involve the extremely rapid deployment of an object with explosives. While airbags can protect a person under the right circumstances, they can also injure or kill. To protect occupants not wearing seat belts, U.S. airbag designs trigger much more quickly than airbags designed in other countries. As seat belt use in the U.S. climbed in the late 1980s and early 1990s, auto manufactures were able to adjust their designs. Today, all airbag control units recognize if a belt is used, and set the trigger time accordingly.[17]

Newer airbag designs trigger at a lesser speed; nonetheless, occupants are strongly advised to remain at least 25 centimeters (10 in) from the panel from which frontal airbags deploy, to avoid injury from the bag in a crash. While driving, a driver must be seated so that the center of the chest remains 25 centimeters (10 in) from the center of the steering wheel hub. The design of side airbags means occupants of a vehicle must not lean against the inside of the car window or doors, the pillars or place objects between themselves and the side of the vehicle. Despite many cars still featuring hooks on passenger assist grips, these can not be used when side thorax, and in particular, curtain airbags are fitted.[citation needed][18]

Minor and/or superficial injuries, such as abrasion of the skin, hearing damage (from the sound during deployment), head injuries, eye damage for spectacle wearers and breaking the nose, fingers, hands or arms can occur as the airbag deploys.[citation needed] Most vehicle airbags are inflated using hot gas generated by a chemical process. Using hot gas allows the required pressure to be obtained with a smaller mass of gas than would be the case using lower temperatures. However, the hot gas can pose a risk of thermal burns if it comes in contact with the skin during deployment and occupant interaction. Burns are most common to the arms, face and chest. These burns are often deep dermal or second-degree burns that take longer to heal and risk scarring.[citation needed]

In 1990, the first automotive fatality attributed to an airbag was reported,[citation needed] with deaths peaking in 1997 at 53 in the United States.[citation needed] TRW produced the first gas-inflated airbag in 1994, with sensors and low-inflation-force bags becoming common soon afterwards. Dual-depth (also known as dual-stage) airbags appeared on passenger cars in 2005. By that time, deaths related to airbags had declined, with no adult deaths and two child deaths attributed to airbags that year. Injuries remain fairly common in accidents with an airbag deployment.

Airbags must inflate very rapidly to be effective, and therefore come out of the steering wheel hub or instrument panel with considerable force, generally at a speed of about 97.8 m/s (220 mph). Because of this initial force, contact with a deploying airbag may cause injury. These airbag contact injuries, when they occur, are typically very minor abrasions or burns. The sound of airbag deployment is very loud, in the range of 165-175 dB for 0.1 second. Hearing damage can result in some cases.

More serious injuries are rare; however, serious or even fatal injuries can occur when someone is very close to, or in direct contact with an airbag when the airbag deploys. Such injuries may be sustained by unconscious drivers who are slumped over the steering wheel, unrestrained or improperly restrained occupants who slide forward in the seat during pre-crash braking, and even properly restrained drivers who sit very close to the steering wheel. Objects must never be attached to an airbag, or placed loose on or near an airbag, since they can be propelled with great force by a deploying airbag, potentially causing serious injuries.

The increasing use of airbags may actually make rescue work for firefighters, emergency medical service and police officers more dangerous.[citation needed] Every first responder should be properly trained on how to safely deactivate airbags or be aware of the potential hazards. Removing the car battery does not deactivate the airbags.[citation needed]

Improvements in sensing and gas generator technology have allowed the development of second generation airbag systems that can adjust their deployment parameters to size, weight, position and restraint status of the occupant. These improvements have demonstrated a reduced injury risk factor for small adults and children who had an increased risk of injury with first generation airbag systems.[19]

Safe use of airbags

An unrestrained or improperly restrained occupant can be seriously injured or killed by a deploying airbag. The National Highway Traffic Safety Administration (NHTSA) recommends drivers sit with at least 25 cm (10") between the center of their breastbone and the center of the steering wheel. Children under the age of 13 years should always be properly restrained in a rear seat[20]. A rear-facing infant restraint must never be put in the front seat of a vehicle with a front passenger airbag. A rear-facing infant restraint places an infant's head close to the airbag, which can cause severe head injuries, or death if the airbag deploys. Some modern cars include a switch to disable the front passenger airbag, (although not in Australia, where rear-facing child seats must not be used in the front where an airbag is fitted), in case a child-supporting seat is used there.

Smoking a pipe should be avoided while driving. If the airbag inflates and hits the pipe, it is likely to be fatal, even if the crash is moderate.

Aerospace and military applications

File:NASA-pathfinder-airbag-test.jpg
NASA engineers test the Mars Pathfinder airbag landing system on simulated Martian terrain

The aerospace industry and the US Government has applied airbag technologies for many years. NASA, and US DoD have incorporated airbag systems in various aircraft and spacecraft applications as early as the 1960s.

OH-58D CABS test

Airbag landing systems

The first use of airbags for landing were Luna 9 and Luna 13, which landed on the Moon in 1966 and returned panoramic images. The Mars Pathfinder lander employed an innovative airbag landing system, supplemented with aerobraking, parachute, and solid rocket landing thrusters. This prototype successfully tested the concept, and the two Mars Exploration Rover Mission landers employed similar landing systems. The Beagle 2 Mars lander also tried to use airbags for landing, but the landing was unsuccessful for reasons which are not entirely known.

Occupant protection

The US Army has incorporated airbags in its UH-60A/L[21] Black Hawk and OH-58D Kiowa Warrior[22] helicopter fleets. The Cockpit Air Bag System (CABS) consists of forward and lateral airbags with an Electronic Crash Sensor Unit (ECSU).[23] The CABS system was conceived and developed by the US Army Aviation Applied Technology Directorate, Fort Eustis, Va.[24] It is the first conventional airbag system for occupant injury prevention designed and developed specifically for helicopter applications.[25][26]

See also

Notes

  1. Airbag. Audi.com Glossary. Retrieved August 13, 2008.
  2. The Rough Road to Airbags. AmericanHeritage.com. Retrieved August 13, 2008.
  3. How Products Are Made: Airbags. enotes. Retrieved August 13, 2008.
  4. 4.0 4.1 Fenton, John. 1969. The Times.
  5. Airbag Deployment illustrations. imageshack. Retrieved August 13, 2008.
  6. Buick Owners Manual Cover. imageshack. Retrieved August 13, 2008.
  7. Bloch, Byron. Advanced designs for side impact and rollover protection. nrd.nhtsa.dot.gov. "In 1984, a U.S. Department of Transportation edict was issued to try to induce a large percentage of states to adopt their own mandatory buckle-up laws, or else passive restraints (airbags or automatic seatbelts) would be federally mandated...[]...Thus stimulated, airbags finally came into mass-production implementation by most auto manufacturers in the early- 1990s." Retrieved August 13, 2008.
  8. Frontal impact test description. Euro NCAP website. Retrieved August 13, 2008.
  9. BMW Head Protection System Sets New Standard in Side-Impact Protection in Latest IIHS Crash Test. The Auto Channel. Retrieved August 13, 2008.
  10. NHTSA Side-Impact Airbags. Safercar.gov. Retrieved August 13, 2008.
  11. Airbag control unit. Audi.com Glossary. Retrieved August 13, 2008.
  12. Frontal Airbags. Safercar.gov. Retrieved August 13, 2008.
  13. ET 08/00: Sodium azide in car airbags poses a growing environmental hazard. Earth Times. Retrieved August 13, 2008.
  14. Air bag inflator - US Patent 5806888. Patent Storm. Retrieved August 13, 2008.
  15. Thermally stable nonazide automotive airbag propellants - Patent 6306232. Free Patents Online. Retrieved August 13, 2008.
  16. Generation I Airbags / Legal Articles / Resources Newsome Law Firm. Retrieved August 13, 2008.
  17. Tests for Requirements to Improve Occupant Protection for Different Size Occupants, Belted and Unbelted. NHTSA. Retrieved August 13, 2008.
  18. Toyota Aurion: User Manual 2006 model - Australia
  19. Olson, Carin M. Peter Cummings and Frederick P. Rivara. 2005. Association of First- and Second-Generation Airbags with Front Occupant Death in Car Crashes: A Matched Cohort Study. American Journal of Epidemiology. 164:2:161-169. Retrieved August 13, 2008.
  20. Kahane, Charles J. 1998. Airbags - National Highway Traffic Safety Administration. NHTSA. Retrieved August 13, 2008.
  21. Contracts. DefenseLink. Retrieved August 13, 2008.
  22. FAS OH-58D article. FAS.org. Retrieved August 13, 2008.
  23. Armor Holdings CABS Fact Sheet. Armor Holdings. Retrieved August 13, 2008.
  24. Air Defense concept papers. Air University. Retrieved August 13, 2008.
  25. BNET News Release on AHS Annual Forum award. Bnet. Retrieved August 13, 2008.
  26. Tougher Choppers. Special Operations Technology. Retrieved August 13, 2008.

References
ISBN links support NWE through referral fees

External links

{{Category:Automotive Engineering]]

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.