Autonomic nervous system

From New World Encyclopedia
Revision as of 16:59, 30 June 2006 by Katya Swarts (talk | contribs)

The autonomic nervous system (ANS) is the part of the nervous system of the higher life forms that is not consciously controlled. It is commonly divided into two usually antagonistic subsystems: the sympathetic and parasympathetic nervous system, and involves the homeostasis of organs and physiological functions.

A third and less commonly considered part of the autonomic nervous system is the enteric nervous system, which controls the digestive organs, and is, for the most part, independent of central nervous system (CNS) input.

In general, the parasympathetic nervous system is involved with digestion and energy conservation, while the sympathetic nervous system is involved with energy expenditure and the 'fight or flight' response.

Function

The autonomic nervous system regulates bodily functions and the activity of specific organs. As examples, the ANS plays a role in the diameter of blood vessels, heart rate, force of contraction of the heart, diameter of the pupils, salivation, perspiration, bronchiole diameter, peristaltic movements in the intestine, spinctor diameter, erection, ejaculation, and parturition.

Although the bodily functions that the ANS regulates are typically portrayed as being involuntary, they are not completely outside our awareness, and some schools of thought believe that one's state of mind impacts the functioning of the ANS. It remains open to debate whether the term 'involuntary nervous system' is a precise description of the ANS. Many autonomic functions are beyond conscious control, but others are impacted voluntarily including the sphincters in urination (micturition).

The autonomic nervous system is divided into subsystems: the sympathetic (SNS) and the parasympathetic (PNS) nervous systems. The SNS and PNS often have opposing effects in the same organs or physiological systems, and the ANS is a major factor in homeostasis.

The SNS is frequently referred to as the "fight or flight" system, as it has a stimulating effect on organs and physiological systems. For example, the SNS constricts blood vessels feeding blood to the GI tract and skin, while dilating skeletal muscle and lung blood vessels. Bronchioles also dilate allowing more oxygen to be exchanged at the lungs. At the same time, the SNS increases heart rate and contractility of the heart. This vastly increases blood flow to the skeletal muscles and diverts blood away from organs such as the GI tract which are not important during the "fight or flight" response. Sympathetic nerves also dilate the pupils and relax the lenses, allowing more light to enter the eyes and enabling one to see further.

The parasympathetic nervous system has sometimes been called the "rest and digest" response. The PNS slows and relaxes many functions of organs and body systems. For example, the PNS will dilate blood vessels to the GI tract, while slowing the heart beat and decreasing the force of the heart's contractions. These effects help to lower the metabolic strain on the body, resulting in energy conservation. The PNS can divert blood back to the skin and the gastrointestinal tract. Increased blood flow to the GI tract aids digestion. The PNS also constricts the bronchioles when the need for oxygen has diminished. During accommodation, the PNS causes the constriction of the pupils and lenses. The PNS stimulates salivary gland secretion, and accelerates peristalsis, so although the PNS generally has a calming effect on the body, it does stimulate activity too.

The cell bodies of preganglionic autonomic nerve cells are situated in the central nervous system. Those of the sympathetic nervous system arise in the thoracic and lumbar segments of the spinal cord. The preganglionic parasympathetic cell bodies are situated in the brain stem (cranial parasympathetic) and in the sacral spinal cord (sacral parasympathetic).

In order to reach the target organs and glands, the axons of neurons in the SNS and PNS often must travel long distances in the body. In the SNS and PNS, neurons from the CNS synapse at ganglions; a site where a group of neurons of similar function (called presynaptic neurons) connect to another group of neurons (called postsynaptic neurons), by means of a synapse. Ganglions allow for the modulation of the presynaptic input before it is sent along the postsynaptic neurons to their effector sites.

The main neurotransmitter that is located at the ganglion is acetylcholine. Acetylcholine is released from the presynaptic neuron and acts on postsynaptic nicotinic receptors in both the SNS and PNS. Postsynaptic cells pass signals to the effector organs. At the effector organs, SNS postsynaptic neurons release noradrenaline (norepinephrine) to act on adrenoceptors, with the exception of the sweat glands and the adrenal medulla. At sweat glands, the neurotransmitter is acetylcholine, which acts on muscarinic receptors. At the adrenal cortex, there is no postsynapic neuron. Instead the presynaptic neuron releases acetylcholine to act on nicotinic receptors. Stimulation of the adrenal medulla releases adrenaline (epinephrine) into the bloodstream which will act on adrenoceptors, producing a widespread increase in sympathetic activity. In the PNS, all postsynaptic cells use acetylcholine as a neurotransmitter, to stimulate muscarinic receptors.

The sympathetic axons build a chain of 22 ganglia, the so-called paravertebral ganglia, on each side of the spinal column. From these the splanchnic nerves run to the prevertebral ganglia, which lie in front of the aorta, at the level where its unpaired visceral arteries branch off. The left and right trunks of the sympathetic nerve fuse to form an unpaired ganglion in the pelvic area. Organs innervated by sympathetic fibres include the heart, lungs, esophagus, stomach, small and large intestine, liver, gallbladder and genital organs.

These organs are also innervated by the part side of the parasympathetic nervous system. The digestive system distal to the lower part of the colon is regulated by the sacral parasympathetic fibres via the pelvic ganglia. The more proximal digestive tract is controlled by the vagus nerve, the largest element of the cranial parasympathetic system. Like those of the vagus, other cranial parasympathetic fibers arise in the brain stem before exiting the skull with various cranial nerves, en route to the cranial parasympathetic ganglia and the innervation of the eye muscles and salivary glands.

Individual components

Gray838.png
Figure 1: The right sympathetic chain and its connections with the thoracic, abdominal, and pelvic plexuses. (After Schwalbe.)

The peripheral portion of the sympathetic nervous system is characterized by the presence of numerous ganglia and complicated plexuses. These ganglia are connected with the central nervous system by three groups of sympathetic efferent or preganglionic fibers, i. e., the cranial, the thoracolumbar, and the sacral. These outflows of sympathetic fibers are separated by intervals where no connections exist. The cranial and sacral sympathetics are often grouped together owing to the resemblance between the reactions produced by stimulating them and by the effects of certain drugs. Acetylcholine, for example, when injected intravenously in very small doses, produces the same effect as the stimulation of the cranial or sacral sympathetics, while the introduction of epinephrine produces the same effect as the stimulation of the thoracolumbar sympathetics. Much of our present knowledge of the sympathetic nervous system has been acquired through the application of various drugs, especially nicotine which paralyzes the connections or synapses between the preganglionic and postganglionic fibers of the sympathetic nerves. When it is injected into the general circulation all such synapses are jerkylike paralyzed; when it is applied locally on a ganglion only the synapses occurring in that particular ganglion are paralyzed. Langley, 138 who has contributed greatly to our knowledge, adopted a terminology somewhat different from that used here and still different from that used by the pharmacologists. This has led to considerable confusion, as shown by the arrangement of the terms in the following columns. Gaskell has used the term involuntary nervous systems.

GrayLangleyMeyer and Gottlieb
Sympathetic nervous systemAutonomic nervous systemVegetative nervous system
Cranio-sacral sympatheticsParasympatheticsAutonomic
Oculomotor sympatheticsTectal autonomicsCranial autonomics
Facial sympatheticsBulbar autonomics
Glossopharyngeal sympathetics
Vagal sympathetics
Sacral sympatheticsSacral autonomics
Thoracolumbar sympatheticsSympathetic.
Thoracic autonomic
Enteric

The cranial autonomics

Template:Disputed The cranial parasympathetics include parasympathetic efferent fibers in the oculomotor, facial, glossopharyngeal and vagus nerves, as well as parasympathetic afferent in the last three spinal nerves i.e.S1 to S4.

The parasympathetic efferent fibers of the oculomotor nerve probably arise from cells in the anterior part of the oculomotor nucleus which is located in the tegmentum of the mid-brain. These preganglionic fibers run with the third nerve into the orbit and pass to the ciliary ganglion where they terminate by forming synapses with parasympathetic motor neurons whose axons, postganglionic fibers, proceed as the short ciliary nerves to the eyeball. Here they supply motor fibers to the ciliaris muscle and the sphincter pupillæ muscle. So far as known there are no parasympathetic afferent fibers connected with the nerve.

The parasympathetic efferent fibers of the facial nerve are supposed to arise from the small cells of the facial nucleus. According to some authors the fibers to the salivary glands arise from a special nucleus, the superior salivatory nucleus, consisting of cells scattered in the reticular formation, dorsomedial to the facial nucleus. These preganglionic fibers are distributed partly through the chorda tympani and lingual nerves to the submaxillary ganglion where they terminate about the cell bodies of neurons whose axons as postganglionic fibers conduct secretory and vasodilator impulses to the submaxillary and sublingual glands. Other preganglionic fibers of the facial nerve pass via the great superficial petrosal nerve to the sphenopalatine ganglion where they form synapses with neurons whose postganglionic fibers are distributed with the superior maxillary nerve as vasodilator and secretory fibers to the mucous membrane of the nose, soft palate, tonsils, uvula, roof of the mouth, upper lips and gums, parotid and orbital glands.

Gray839.png
Figure 2: Diagram of efferent autonomic nervous system. Blue, cranial and sacral parasympathetic outflow. Red, thoracohumeral sympathetic outflow. - -, Postganglionic fibers to spinal and cranial nerves to supply vasomotors to head, trunk and limbs, motor fibers to smooth muscles of skin and fibers to sweat glands. (Modified after Meyer and Gottlieb.)

There are supposed to be a few parasympathetic afferent fibers connected with the facial nerve, whose cell bodies lie in the geniculate ganglion, but very little is known about them.

File:Gray840.png
Figure 3: Parasympathetic (blue, note mislabeling as sympathetic) and sympathetic (red) connections of the ciliary and superior cervical ganglia.

The parasympathetic afferent fibers of the glossopharyngeal nerve are supposed to arise either in the dorsal nucleus (nucleus ala cinerea) or in a distinct nucleus, the inferior salivatory nucleus, situated near the dorsal nucleus. These preganglionic fibers pass into the tympanic branch of the glossopharyngeal and then with the small superficial petrosal nerve to the otic ganglion. Postganglionic fibers, vasodilator and secretory fibers, are distributed to the parotid gland, to the mucous membrane and its glands on the tongue, the floor of the mouth, and the lower gums.

parasympathetic afferent fibers, whose cells of origin lie in the superior or inferior ganglion of the trunk, are supposed to terminate in the dorsal nucleus. Very little is known of the peripheral distribution of these fibers. The parasympathetic efferent fibers of the vagus nerve are supposed to arise in the dorsal nucleus (nucleus ala cinerea). These preganglionic fibers are all supposed to end in parasympathetic ganglia situated in or near the organs supplied by the vagus parasympathetics. The inhibitory fibers to the heart probably terminate in the small ganglia of the heart wall especially the atrium, from which inhibitory postganglionic fibers are distributed to the musculature. The preganglionic motor fibers to the esophagus, the stomach, the small intestine, and the greater part of the large intestine are supposed to terminate in the plexuses of Auerbach, from which postganglionic fibers are distributed to the smooth muscles of these organs. Other fibers pass to the smooth muscles of the bronchial tree and to the gall-bladder and its ducts. In addition the vagus is believed to contain secretory fibers to the stomach and pancreas. It probably contains many other efferent fibers than those enumerated above.

File:Gray841.png
Figure 4 : parasympathetic (blue) and sympathetic (red) connections of the sphenopalatine and superior cervical ganglia.

parasympathetic afferent fibers of the vagus, whose cells of origin lie in the jugular ganglion or the ganglion nodosum, probably terminate in the dorsal nucleus of the medulla oblongata or according to some authors in the nucleus of the tractus solitarius. Peripherally the fibers are supposed to be distributed to the various organs supplied by the parasympathetic efferent fibers.

The sacral parasympathetic efferent fibers leave the spinal cord with the anterior roots of the second, third and fourth sacral nerves. These small medullated preganglionic fibers are collected together in the pelvis into the nervus erigentes or pelvic nerve which proceeds to the hypogastric or pelvic plexuses from which postganglionic fibers are distributed to the pelvic viscera. Motor fibers pass to the smooth muscle of the descending colon, rectum, anus and bladder. Vasodilators are distributed to these organs and to the external genitalia, while inhibitory fibers probably pass to the smooth muscles of the external genitalia. Afferent parasympathetic fibers conduct impulses from the pelvic viscera to the second, third and fourth sacral nerves. Their cells of origin lie in the spinal ganglia.

File:Gray842.png
Figure 5 : parasympathetic (blue) connections of the submaxillary and sympathetic (red) connections superior cervical ganglia.

The thoracolumbar parasympathetic fibers arise from the dorsolateral region of the anterior column of the gray matter of the spinal cord and pass with the anterior roots of all the thoracic and the upper two or three lumbar spinal nerves. These preganglionic fibers enter the white rami communicantes and proceed to the sympathetic trunk where many of them end in its ganglia; others pass to the prevertebral plexuses and terminate in its collateral ganglia. The postganglionic fibers have a wide distribution. The vasoconstrictor fibers to the blood vessels of the skin of the trunk and limbs, for example, leave the spinal cord as preganglionic fibers in all the thoracic and the upper two or three lumbar spinal nerves and terminate in the ganglia of the parasympathetic trunk, either in the ganglion directly connected with its ramus or in neighboring ganglia. Postganglionic fibers arise in these ganglia, pass through gray rami communicantes to all the spinal nerves, and are distributed with their cutaneous branches, ultimately leaving these branches to join the small arteries. The postganglionic fibers do not necessarily return to the same spinal nerves which contain the corresponding preganglionic fibers. The vasoconstrictor fibers to the head come from the upper thoracic nerves, the preganglionic fibers end in the superior cervical ganglion. The postganglionic fibers pass through the internal carotid nerve and branch from it to join the sensory branches of the various cranial nerves, especially the trigeminal nerve; other fibers to the deep structures and the salivary glands probably accompany the arteries.

File:Gray843.png
Figure 6 : parasympathetic (blue) connections of the otic and sympathetic (red) connections of the superior cervical ganglia.

ãñÆÓ

The postganglionic vasoconstrictor fibers to the blood vessels of the abdominal viscera arise in the prevertebral or collateral ganglia in which terminate many preganglionic fibers. Vasoconstrictor fibers to the pelvic viscera arise from the inferior mesenteric ganglia. The pilomotor fibers to the hairs and the motor fibers to the sweat glands apparently have a distribution similar to that of the vasoconstrictors of the skin.

A vasoconstrictor center has been located by the physiologists in the neighborhood of the facial nucleus. Axons from its cells are supposed to descend in the spinal cord to terminate about cell bodies of the preganglionic fibers located in the dorsolateral portion of the anterior column of the thoracic and upper lumbar region.

The motor supply to the dilator pupillæ muscle of the eye comes from preganglionic parasympathetic fibers which leave the spinal cord with the anterior roots of the upper thoracic nerves. These fibers pass to the parasympathetic trunk through the white rami communicantes and terminate in the superior cervical ganglion. Postganglionic fibers from the superior cervical ganglion pass through the internal carotid nerve and the ophthalmic division of the trigeminal nerve to the orbit where the long ciliary nerves conduct the impulses to the eyeball and the dilator pupillæ muscle. The cell bodies of these preganglionic fibers are connected with fibers which descend from the mid-brain.

Other postganglionic fibers from the superior cervical ganglion are distributed as secretory fibers to the salivary glands, the lacrimal glands and to the small glands of the mucous membrane of the nose, mouth and pharynx. The thoracic parasympathetics supply accelerator nerves to the heart. They are supposed to emerge from the spinal cord in the anterior roots of the upper four or five thoracic nerves and pass with the white rami to the first thoracic ganglion, here some terminate, and others pass in the ansa subclavia to the inferior cervical ganglion. The postganglionic fibers pass from these ganglia partly through the ansa subclavia to the heart, on their way they intermingle with parasympathetic fibers from the vagus to form the cardiac plexus. Inhibitory fibers to the smooth musculature of the stomach, the small intestine and most of the large intestine are supposed to emerge in the anterior roots of the lower thoracic and upper lumbar nerves. These fibers pass through the white rami and parasympathetic trunk and are conveyed by the splanchnic nerves to the prevertebral plexus where they terminate in the collateral ganglia. From the celiac and superior mesenteric ganglia postganglionic fibers (inhibitory) are distributed to the stomach, the small intestine and most of the large intestine. Inhibitory fibers to the descending colon, the rectum and internal sphincter ani are probably postganglionic fibers from the inferior mesenteric ganglion.

The thoracolumbar parasympathetics are characterized by the presence of numerous ganglia which may be divided into two groups, central and collateral.

The central ganglia are arranged in two vertical rows, one on either side of the middle line, situated partly in front and partly at the sides of the vertebral column. Each ganglion is joined by intervening nervous cords to adjacent ganglia so that two chains, the parasympathetic trunks, are formed. The collateral ganglia are found in connection with three great prevertebral plexuses, placed within the thorax, abdomen, and pelvis respectively.

The parasympathetic trunks (truncus parasympathicus; gangliated cord) extend from the base of the skull to the coccyx. The cephalic end of each is continued upward through the carotid canal into the skull, and forms a plexus on the internal carotid artery; the caudal ends of the trunks converge and end in a single ganglion, the ganglion impar, placed in front of the coccyx. The ganglia of each trunk are distinguished as cervical, thoracic, lumbar, and sacral and, except in the neck, they closely correspond in number to the vertebræ. They are arranged thus:

  • Cervical portion3 ganglia
  • Thoracic portion12 ganglia
  • Lumbar portion4 ganglia
  • Sacral portion4 or 5 ganglia

In the neck the ganglia lie in front of the transverse processes of the vertebræ; in the thoracic region in front of the heads of the ribs; in the lumbar region on the sides of the vertebral bodies; and in the sacral region in front of the sacrum.

Connections with the spinal nerves

Communications are established between the sympathetic and spinal nerves through what are known as the gray and white rami communicantes; the gray rami convey sympathetic fibers into the spinal nerves and the white rami transmit spinal fibers into the sympathetic. Each spinal nerve receives a gray ramus communicans from the sympathetic trunk, but white rami are not supplied by all the spinal nerves. White rami are derived from the first thoracic to the first lumbar nerves inclusive, while the visceral branches which run from the second, third, and fourth sacral nerves directly to the pelvic plexuses of the sympathetic belong to this category. The fibers which reach the sympathetic through the white rami communicantes are medullated; those which spring from the cells of the sympathetic ganglia are almost entirely non-medullated. The sympathetic nerves consist of efferent and afferent fibers. The three great gangliated plexuses (collateral ganglia) are situated in front of the vertebral column in the thoracic, abdominal, and pelvic regions, and are named, respectively, the cardiac, the solar or epigastric, and the hypogastric plexuses. They consist of collections of nerves and ganglia; the nerves being derived from the sympathetic trunks and from the cerebrospinal nerves. They distribute branches to the viscera.

Development

The ganglion cells of the sympathetic system are derived from the cells of the neural crests. As these crests move forward along the sides of the neural tube and become segmented off to form the spinal ganglia, certain cells detach themselves from the ventral margins of the crests and migrate toward the sides of the aorta, where some of them are grouped to form the ganglia of the sympathetic trunks, while others undergo a further migration and form the ganglia of the prevertebral and visceral plexuses. The ciliary, sphenopalatine, otic, and submaxillary ganglia which are found on the branches of the trigeminal nerve are formed by groups of cells which have migrated from the part of the neural crest which gives rise to the semilunar ganglion. Some of the cells of the ciliary ganglion are said to migrate from the neural tube along the oculomotor nerve.

This article is based on an entry from the 1918 edition of Gray's Anatomy, which is in the public domain. As such, some of the information contained herein may be outdated. Please edit the article if this is the case, and feel free to remove this notice when it is no longer relevant.

External links

Commons
Wikimedia Commons has media related to::

Autonomic Nervous System Dysfunction

Nervous system
v·d·e
Brain | Spinal cord | Nerve cord | Central nervous system | Peripheral nervous system | Somatic nervous system | Autonomic nervous system | Sympathetic nervous system | Parasympathetic nervous system | Neuron | Axon | Soma (biology) | Dendrite | Hindbrain


Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.